
大数据时代,一个新的相对论时代
今天的社会治理、商业管理以及个人生活,无不在快速地数据化,即事实和细节被广泛地记录下来,通过这些记录,消逝的世界可以再现,从而进行分析和预测,人类历史上一些精细的、微妙的、隐性的、曾经难以捕捉的关系和知识,现在都可以捕捉到,快速上升为显性的知识。
我的结论是,通过数据,人类从来没有如此客观地认知我们每天生活的世界。
从成都返回杭州,有几个小时我在空中飞行。回到家,一封邮件已经静静地躺在我的邮箱。里面是迫切且尖锐的提问:
“涂先生,这个时代,让我越来越困惑,我是一名资深的数据分析师,但随着数据的增多,我甚至成了一名大数据的怀疑论者……之所以没有在现场提问,是担心我的挑战给大数据的信奉者泼上冷水……”
他的问题是,数据越来越多,但他却经常感受到,他离事实越来越远,通过数据,无法发现真正的真相。
换句话说,虽然数据是真实的,但它却不一定符合真正的事实。
这是一个新的相对论,数据相对论。爱因斯坦的相对论是关于时空和引力,新的相对论是关于数据和事实。
数据永远在追赶事实
美国政府曾经竭尽脑汁,一直想掌握全国真正的人口数量。1860年代开始,美国总统就开始给美国的普通公民写信,请他们不要因为害怕人口普查而隐瞒人数,他以总统的名义保证,这些数据只是为了掌握美国的真实人口数量,而不会用于征税、征兵和法庭调查等其它用途。此后历届美国总统都致力于排除人为因素,力图保证数据的客观性。他们还想方设法缩短普查时间,最初一次普查要两年时间才能完成,到后来慢慢缩短至两个月,乃至两三天。
每时每刻,都有人出生、死亡或者濒临死亡,他们发生在不同的家庭、医院、甚至野外,现实不会静止以等待你给它画像,任何一次人为组织的人口普查,都没有办法在同一个时间点掌握全部的这些事实,从而计算出一个时间点这个世界真正的人口数目。
直到今天,信息技术、互联网、手机如此发达,这个问题还没有解决。
人类是这个世界的灵长,迄今为止仍无法准确的掌握这个星球上有多少同类,遑论其他?
世间万物,一颗红豆、一碗牛肉面、一台汽车、一段感情,其中的知识,都往往丰富得我们难以想象,所谓一花一世界、一叶一菩提。
世界之大、包罗万象、周行不殆、须臾万变,人类就像刻舟求剑的楚人一样,能掌握的永远只是某一个节点某一个范围内的小事实,有混乱和困惑是再自然不过的事了。
但在纷繁复杂、持续演变的世界,人类又在不断努力。纵使人口不断变动,美国政府亦不断改进数据获取方式,以提高效率、逼近真相。今天的美国人口普查局,已经开发了一个“人口钟”(population clock),每分钟可以预测一次美国人口的变化情况。
数据永远在追赶事实,就像永不停歇的钟摆。在追求真理的道路上,我们进入了一个更为清晰的相对论时代。
数据仅记录事实的一个侧面
十年前,我刚到美国留学。开学不久,就学到了一件重要的事情,必须区分“事实”和“观点”,至今还记得,教授在课堂上第一次引用这句名言:“每个人都可以有他自己的观点,但不可以有他自己的事实”,我从此引为圭臬。
但随着经验和阅历的增长,我又感悟到,大千世界,之所以意见纷争、共识稀少,还是因为每个人拥有他自己的事实,事实确实只有一个,但一个事实却有千万面,人因为自己的局限,往往只能看到自己认同的那一面,很少有人能面面俱到、看到一个事实的全貌。
导致的结果,各人还是各有“事实”。
这真是个很可怕的结果,数据越多,分歧也可能越多,因为每一个不同的观点,都能找到相应的数据来支持,一定程度上,比没有数据还糟糕。
在我还没到阿里巴巴工作之前,阿里就有业务线上的高管咨询我,说阿里有很多数据,也有很多部门,仅仅预测顾客下一件可能要买的东西,就有9个部门在做,这些部门,往往得出不一样的结论,而且都认为自己的预测最占理、最准确!
我的第一反应,是这些部门依据的应该是各自收集的、不同环节的数据,一问果然如此。我建议说,阿里的正确做法,应该是合并部门、归整数据,形成一个多维度的、尽可能大的数据,再进行预测。
这个案例其实隐藏着一个巨大的时代风险。数量庞大的数据,将导致“人人皆有理”。一个人要做出一个与其它人迥异的结论,总可以找到相应的数据来支撑自己。
其中的本因,就是数据再多,我们都可能无法掌握事实的全貌。数据再大都不是事实,但它逼近事实。事实确实是只有一个,但有千万个棱面,任何一组数据,可能都只仅仅描绘了“一个”面。
如果有上帝,那只有他的眼睛才能看到万事万物的全貌。人,不可以。
再大的数据,也不可以
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14