京公网安备 11010802034615号
经营许可证编号:京B2-20210330
进入大数据时代,企业要怎样未雨绸缪
2017年一开年,AI、大数据就成为炙手可热的话题。围绕AI、大数据的并购整合此起彼伏。不过,还有很多人知识念叨着,却不甚了解,那么大数据究竟有什么用呢?
以电影举例,《美国队长2》大家都看过,反派组织九头蛇暗中渗透了洞察计划,掌握了核心控制职位,并由索拉编写一套算法并悄悄植入空天舰中,当空天舰升空后立即执行该算法,以此消灭敌对势力。
没错。索拉算法的核心技术就是大数据。移动互联时代,人们大量的个人信息数据沉淀在互联网世界中。当计算机对这些数据进行汇总、分析,它可能对你的了解超过你自己。
01 | 产业崛起
越来越多的机构开始意识到数据正在成为组织最重要的资产,数据分析能力正在成为组织的核心竞争力。具体有以下三大案例:
1、2013年3月22日,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。奥巴马政府将数据定义为“未来的新石油”,并表示一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来,对数据的占有和控制甚至将成为陆权、海权、空权之外的另一种国家核心资产。
2、几年前联合国也发布了大数据政务白皮书,指出大数据对于联合国和各国政府来说是一个历史性的机遇,人们如今可以使用极为丰富的数据资源,来对社会经济进行前所未有的实时分析,帮助政府更好地响应社会和经济运行。
3、而最为积极的还是众多的IT企业。麦肯锡在一份名为《大数据,是下一轮创新、竞争和生产力的前沿》的专题研究报告中提出,“对于企业来说,海量数据的运用将成为未来竞争和增长的基础”,该报告在业界引起广泛反响。
IBM则提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
事实上,自2009年以来,有关“大数据”主题的并购案层出不穷,且并购数量和规模呈逐步上升的态势。其中,Oracle对Sun、惠普对Autonomy两大并购案总金额高达176亿美元,大数据的产业价值由此可见一斑。
02 |政府数据正在逐步开放
目前国内的大数据掌握在政府和少数企业手里,因为诸多因素,大数据难以流通。就大数据而言,政府拥有的数据一定是个金矿,含金量最高,相对而言这些政府机构的数据更有效。比如金融的信息在银行,医疗的信息在医院。所以政府部门的开放对大数据商业生态非常重要。
习总书记2016年11月9号提出要建国家大数据中心,各级政府目前都在建数据中心,现在开放工作在有序推进,都在制订标准。
譬如济南率先开放了16个委办局的数据,涉及到了违章查询、道路信息、养老金、医院挂号等等,老百姓跟政府打交道的信息,除了审批信息以外,基本在济南都开放了。
未来各个城市,都会以百姓为活动的主体构建各个大数据中心。各个部委也在研究如何逐步开放大数据。比如,医疗大数据,由卫计委牵头,也会成为国家大数据的一部分。
03 |大数据的交易、消费
在如今的创业领域,从大到高新技术的创业一直到路边拉面馆的创业,无一离得开大数据,而未来几年要做的事情,就是推动大数据开放交易,而这也将是未来的机遇。
数据作为企业新能源,与人们生活息息相关,每个人在消费同时也在生产数据。除政府手里的大数据外,掌握在各个市场交易场景里的大数据也价值不菲。
而这也是大数据创业的第二个目标,即针对企业市场的大数据平台。要解决这方面的数据流通问题,解决的方法是:联盟。
简而言之,这种模式下,数据都来自于第三方,一方面帮助政府提供数据开发,可以使用政府数据;一方面寻找伙伴或投资新创公司,并共享数据。
现在的大数据联盟中,一种是围绕着数据流通和交易股价实验室的交易联盟,一种是围绕数据源建立的大数据联盟。
04 |打造数据交易平台
目前各个大数据公司不仅在做技术层面的探索,也在做商业模式的探索。上个十年看电商,这个十年看数商,未来能超越BAT的,一定是大数据公司。
目前已经开始实验的模式是:首先全方位掌握政府公开数据,其次共享联盟企业数据,最后打造数据交易平台,让数据自由流通。要把数据进行关联,有数据的人可以在平台上售卖,想购买数据的人也可以在平台上找到。
未来所有创业,无论是高端创业,还是小的实体创业,都离不开大数据的支撑。供给侧改革的核心就是提高运营效率。而有了大数据观念,市场的需求和竞争的态势就会非常清晰,再回到内部的研发,思路就会清晰很多。大数据就能帮助创业者做到“心中有数”。
大数据时代已经来临,由于数据资源开放和流通不足,制约了产业爆发和行业智能变革。通过建立数据交易平台,推动数据的流通,发挥数据的商品属性,促成数据交换、整合,将真正带动大数据产业繁荣。
05 |浪潮的下一站:大数据公司
在电商领域,卖家拥有不少的数据但也分析不出太多结果,是因为去从多个维度进行数据收集的工作,对数据的管理和获取不够,直接导致无法利用数据去辅助决策。
但不论是亚马逊、淘宝还是京东等平台,充分掌握消费者的原始数据,通过对后台的大数据源,进行收集、分析所推测,做出来的判断具有预测性,这不仅带来用户体验提升,更多的促进消费。
但是更多的卖家和中小企业是没有能力去分析数据的,这时候就需要有专门的公司取帮助他们使用大数据。
而帮助这些中小企业去获取和分析数据,也将是大数据企业未来的商业机会。
06 |企业要未雨绸缪
培训企业的员工
大多数企业最缺乏的是人才,而当大数据开始应用的时候,企业将会缺少这方面的采集收集分析方面的人才,对于一些公司,特别是那种人比较少的公司,工作人员面临大数据将是一种挑战,企业要在平时的时候多对员工进行这方面的培训,以确保在大数据到来时,员工也能适应相关的工作。
培养三种能力
随着大数据时代的到来,企业应该在内部培养三种能力。第一,整合企业数据的能力;第二,探索数据背后价值和制定精确行动纲领的能力;第三,进行精确快速实时行动的能力。
做到上面的几点,当大数据应用的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进企业快速发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01