京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在医疗领域的应用
一. 大数据的定义及特征
大数据顾名思义就是数量极其庞大的数据资料。大数据的意义在于提供“大见解”:从不同来源收集信息,然后分析信息,以揭示用其他方法发现不了的趋势。早期,IBM定义了大数据的5v特性:大量性( Volume), 多样性(Variety), 快速性(Velocity)价值(Value)真实(Veracity)。
二. 医疗大数据的爆发
早期,大部分医疗相关数据是纸张化的形式存在,而非电子数据化存储, 比如官方的医药记录,收费记录,护士医生手写的病例记录,处方药记录,X光片记录,磁共振成像(MRI)记录,CT影像记录等等。随着强大的数据存储,计算平台,及移动互联网的发展,现在的趋势是医疗数据的大量爆发及快速的电子数字化。以上提到的医疗数据都在不同程度上向数字化转化。移动互联网、大数据、云计算等多领域技术与医疗领域跨界融合,新兴技术与新服务模式快速渗透到医疗各个环节,并让人们的就医方式出现重大变化,也为中国医疗带来了新的发展机遇。
三. 医疗大数据的应用
大数据技术在医疗领域的技术层面、业务层面都有十分重要的应用价值在技术层面:大数据技术可以应用于非结构化数据的分析、挖掘,大量实时监测数据分析等,为医疗卫生管理系统、综合信息平台等建设提供技术支持;在业务层面:大数据技术可以向医生提供临床辅助决策和科研支持,向管理者提供管理辅助决策、行业监管、绩效考核支持,向居民提供健康监测支持,向药品研发提供统计学分析、就诊行为分析支持。
1. 大数据在医疗系统、信息平台建设中的应用
大数据技术可以通过建立海量医疗数据库、网络信息共享、数据实时监测等方式,为国家卫生综合管理信息平台、电子健康档案资源库、国家家级卫生监信息系统、妇幼保健业务信息系统、医院管理平台等提供基本数据源,并提供数据源的存储、更新、挖掘分析、管理等功能。
2. 大数据技术在临床辅助决策中的应用
大数据技术则可以将患者的影像数据,病历数据、检验检查结果、诊疗费用等各种数据录入大数据系统,通过机器学习和挖掘分析方法,大夫即可获得类似症状患者的疾病机理、病因以及治疗方案,这对于大夫更好地把握疾病的诊断和治疗十分重要。
3. 大数据技术在医疗科研领域中的应用
在医疗科研领域,运用大数据技术对各种数据进行筛选、分析,可以为科研工作提供强有力的数据分析支持。例如健康危险因素分析的科研中,利用大数据技术可以在系统全面地收集健康危险因素数据,包括环境因素,生物因素,经济社会因素,个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等的基础上,进行比对关联分析,针对不同区域、家族进行评估和遴选,研究某些疾病发病的家族性、地区区域分布性等特性。
4. 大数据技术在健康监测中的应用
在居民的健康监测方面,大数据技术可以提供居民的健康档案,包括全部诊疗信息、体检信息,这些信息可以为患病居民提供更有针对性的治疗方案。对于健康居民,大数据技术通过集成整合相关信息,通过挖掘数据对居民健康进行智能化监测,并通过移动设备定位数据对居民健康影响因素进行分析,为居民提供个性化健康事务管理服务
5. 大数据技术在医药研发、医药副作用研究中的应用
在医药研发方面,医药公司能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产出比,合理配置有限研发资源。此外,医药公司能够通过大数据技术优化物流信息平台及管理,使用数据分析预测提早将新药推向市场。在医药副作用研究方面,医疗大数据技术可以避免临床试验法、药物副作用报告分析法等传统方法存在的样本数小、采样分布有限等问题,从千百万患者的数据中挖掘到与某种药物相关的不良反应,样本数大,采样分布广,所获得结果更具有说服力。此外,还可以从社交网中搜索到大量人群服用某种药物的不良反应记录,通过比对分析和数据挖掘方法,更科学、更全面地获得药物副作用的影响。
四. 总结
科技部近期发布的关于精准医学的科技专项中,已将医疗大数据重点支持的内容,以构建良好的医学大数据应用生态系统。相信政策导向可以带动学术界、医疗行业及产业界联动,共同推进医学大数据为中国的公共卫生、临床医学及基础医学的进步发挥作用,增进人民的福祉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22