
大数据云计算赋能 互联网+向工业下沉是必然结果
自“互联网+”从概念到成为国家顶层战略,已过去两年多的时间。如今,”互联网+“的发展已经取得很大进步,在政务、警务、医疗等领域已初见成效,对传统产业的赋能效应也逐渐凸显,推动传统领域的转型升级。而“互联网+”在工业领域的下沉和渗透则是“新风口”,大数据、云计算等能力的开放,将提速工业化进程。
互联网+重塑“智造
“互联网+”是通用技术,向工业下沉是必然结果
“现在讲互联网+,对研究经济的人来说,实际上是通用技术怎么向各行业渗透。前一个很大的通用技术是电力技术,电力技术刚起来的时候,也是很小的一个领域,慢慢地渗透到所有行业。既然是通用,就代表你的技术能带来便利性或提高效率。”对于互联网+的连接能力,国务院发展研究中心企业研究所副所长张文魁这样理解。
同时,他还认为:无论德国工业4.0,还是中国制造2025,也许未来10年、20年、30年,互联网+工业的实际结果,跟现在描绘的并不一样。“但这并不要紧,互联网+作为通用技术,肯定会渗透进去。”
对于张文魁的观点,腾讯移动互联网事业群副总裁、互联网+合作事业部总经理陈广域也表示认同。他提到“互联网+”是互联网思维的进一步实践,在渗透各行各业的同时,也正在推动经济形态不断地发生改变。而对于腾讯而言,作为互联网+的提出者,腾讯“互联网+”思路核心是开放、赋能。“腾讯的定位是连接器,也就是说,不是腾讯自身有能力做所有跟产业互联网+、能源互联网+ 、制造互联网+有关的事,而是腾讯释放和输出核心能力,给所有互联网+生态合作伙伴提供平台和基础,帮助合作伙伴在实现互联网+这件事上变得更简单。”
无论这种“通用技术”渗透到什么行业,最终都会落实到产品和技术上。张文魁指出:互联网+的连接能力已初见成效,虽然在工业领域渗透还比较缓慢,但融合是早晚的事情。当互联网+开放生态与工业领域真正完美的融合时,就可能诞生伟大的产品。
腾讯“互联网+“赋能工业,基础能力是大数据和云计算
对于云计算能力腾讯云副总裁黄海清指出:“云其实是一个基础架构,是一个最底层的,一个平台上面有各个方面的分支应用。”
同时,谈到云计算在工业领域的运用时,黄海清还介绍,在离散制造,包括像汽车制造、工业制造等领域,云计算的应用空间巨大。“我们和三一重工有一个工业云项目,在工业设备上放了很多传感器,传感器收集到很多机器数据,没有云计算的支持是没有办法分析的。把传感器的数据获取、重组在云上,然后进行分析,变成数据库,变成可以利用的大数据价值。这就是大数据和云计算带给工业改革的力量。” 所以“互联网+”赋能,无论在汽车制造、工业制造、重工、轻工、机械等传统企业都需要大数据和云计算的基础能力。
陈广域强调:“大数据和云计算能力能保证数据的传输是更高效的,未来三一重工的每个挖掘机都能连接在一起,那这样我们就知道,全国有多少机器开工、进一步反映今年经济是不是景气、建筑行业是不是遇到问题。过去缺少这些数据还做不到这样的效果,但今天我们有这样的能力,我们可以帮助各行各业做这样的事情。”其实,这正是“互联网+”赋能工业的体现。
腾讯在互联网+的基础能力上,拥有大数据和云计算以及微信小程序的能力,同时,腾讯还拥有社交、游戏、支付、生活等移动端的产品,拥有庞大的用户基数,所以腾讯可以把大数据、云计算等基础能力开放出来,帮助国家政府,传统行业包括制造业在内等各个领域快速使用互联网+的能力,实现快速发展。小程序也可以帮助企业主、商家、个体更好的去触达用户,经营自己的品牌,提升效率。
“互联网+”工业领域发展 想象空间巨大
事实上,无论从德国“工业4.0”提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂,还是“中国制造2025”规划的发布以及一系列相关配套措施的落实来看,都将是推动传统工业转型升级,实现互联网+工业的快速发展。
工业生产的网络化和智能化特征越来越明显,“互联网+”与工业融合发展已经成为不可逆的趋势。虽然说腾讯“互联网+“赋能工业的基础能力是大数据和云计算,但是具体会以什么样的形式融合却给我们留下更大想象空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14