
数据分析之如何优化广告投放
对于大多数广告主来说,广告投放的目的无非就是吸引更多的用户,最终实现营销转化。但同时他们也更加关注这些信息,比如:
广告是否按时投放?
媒体/广告公司承诺的量是否达到?
媒体/广告公司出示的数据是真实的吗?
媒体有没有作弊?
广告的投入与产出是否成正比……等等。
广告主为什么会在意这些?我们以下图为例,笔记本在ZOL投放的费用明细:
从上图不难看出,对于广告主来说广告费用是一笔不小的支出,每一笔广告投放都需要投入大量的资金,谁都希望每一笔费用都花在刀刃上。想要了解上述各种题就要知道广告投放中的各项数据指标所代表的意义,这样才不会被虚假信息所蒙蔽。
广告投放数字背后的玄机
广告效果指标分很多,每一种监测指标反映不同的数据效果,比如二跳率、到达率等反应广告效果有没有达到媒体的承诺;曝光量、点击量反映CPC、CPM够不够,广告受众地域分布反应投放的区域受众人群是不是正确等信息。
同时投放的维度不同监测的指标也不同。比如以推广品牌为目的重点关注点击量、点击用户数、点击IP数,以及到达量、到达用户数 ;以引入流量为目的重点关注到达量、到达用户数、二跳量以及总浏览量;以引导用户参与活动为目的重点关注转化量、转化用户数;以促进销售为目的重点关注转化明细。
与媒体数据指标相比,广告主更加关注广告效果。
数据指标反映了投放的结果,但在实际操作过程中,面对形式繁多的广告,哪个位置,哪个媒介是最好的?如何衡量广告效果?其中哪些广告是有效的?哪些媒介组合是真正有效的呢…..?这一系列问题也是广告主所关注的。
那么在广告投放中,如何解决这些问题,实现精准投放呢?这就需要对广告投放进行优化,对于广告投放中出现的问题及时解决。
一、了解评估广告效果的基本方法
广告效果评估一般围绕点击量(曝光量)、到达量、二跳量、转化量四个指标来评估,每一个指标衡量不同阶段的广告投放数据,通过这些数据帮助我们分析广告投放中出现的问题。据此我们用一个漏斗图为大家展示一下:
其中我们要重点提一下,这里的“点击量”比“曝光量”更重要。 因为衡量广告效果一般是要测算“接触广告的目标受众”, 用曝光代码来统计并不准确。这是因为:
1、曝光代码触发次数 ≠ 广告曝光量(广告实际展示次数)
2、广告曝光量 ≠ 看到广告的人数(互联网广告形式千差万别,同样曝光量的广告,真正注意到/看到的人数差别可能巨大)
3、看到广告的人 ≠ 品牌的目标受众
这中间有3级差异,所以用曝光来测算“接触到广告的 目标受众”很不准确。 点击量才反应真实效果,曝光量作参考。
二、了解转化
广告投放离不开网站这个媒介资源,通过网站,我们要了解这些信息:
哪些地区带来的注册用户多,哪些搜索引擎带来的订单多,哪个广告渠道的转化率最高,哪个着陆页面带来的转化率最高等等。
通过掌握这些转化信息,帮助我们分析转化的情况,比如:
外部来源网站的转化量,可以直接体现该网站的网民质量,同时结合外部来源流量,体现各来源的转化率效果。
转化明细可以将每一个具体转化的效果剖析出来,作为广告CPS效果的评估依据。
三、了解流量
广告要实现转化,最重要的一点就是要有流量,流量从哪里来?哪些途径带来的用户多,哪些地区带来的多…..通过流量来源分析,帮助我们优化调整广告投放渠道和广告方案。比如:
1、根据外部来运网站流入量和二跳率排名,刷选优质来源,剔除劣质来源。
2、根据网站流量曲线规律,了解网民登录网站的习惯,选择最佳的广告内容发布时间。
3、根据网站流量时段变化,发现流量的规律和异常点,进而查找深层原因,及时发现问题,调整投放。
四、区别辨别流量质量
在广告投放过程中,常常遇见虚假流量,恶意点击等现象,因此评估流量的质量有四大要素:恶意点击、虚假流量、着陆页面内容访问、流量用户的活跃度。同时虚假、低质流量具有以下特征:
24小时的流量数据非常均匀,没有明显特征
以天为单位的流量图时高时低,波动非常剧烈
全国各个地区的点击、到达、二跳比率非常接近
着陆页面点击很少,几乎没有任何内容被关注
广告访客的浏览深度接近1层
总之,做好广告投放优化最终目的就是提高广告ROI,其实归根到底一句话,就是让花出去的每一分广告费都起作用,那么如何让每一个广告都起作用呢,其实就是让每一个广告都变得可衡量,让每个广告的最后效果都能用精确的数字来展现,这样精准度才会更高,广告价值也才会最大化。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15