
数据分析之如何优化广告投放
对于大多数广告主来说,广告投放的目的无非就是吸引更多的用户,最终实现营销转化。但同时他们也更加关注这些信息,比如:
广告是否按时投放?
媒体/广告公司承诺的量是否达到?
媒体/广告公司出示的数据是真实的吗?
媒体有没有作弊?
广告的投入与产出是否成正比……等等。
广告主为什么会在意这些?我们以下图为例,笔记本在ZOL投放的费用明细:
从上图不难看出,对于广告主来说广告费用是一笔不小的支出,每一笔广告投放都需要投入大量的资金,谁都希望每一笔费用都花在刀刃上。想要了解上述各种题就要知道广告投放中的各项数据指标所代表的意义,这样才不会被虚假信息所蒙蔽。
广告投放数字背后的玄机
广告效果指标分很多,每一种监测指标反映不同的数据效果,比如二跳率、到达率等反应广告效果有没有达到媒体的承诺;曝光量、点击量反映CPC、CPM够不够,广告受众地域分布反应投放的区域受众人群是不是正确等信息。
同时投放的维度不同监测的指标也不同。比如以推广品牌为目的重点关注点击量、点击用户数、点击IP数,以及到达量、到达用户数 ;以引入流量为目的重点关注到达量、到达用户数、二跳量以及总浏览量;以引导用户参与活动为目的重点关注转化量、转化用户数;以促进销售为目的重点关注转化明细。
与媒体数据指标相比,广告主更加关注广告效果。
数据指标反映了投放的结果,但在实际操作过程中,面对形式繁多的广告,哪个位置,哪个媒介是最好的?如何衡量广告效果?其中哪些广告是有效的?哪些媒介组合是真正有效的呢…..?这一系列问题也是广告主所关注的。
那么在广告投放中,如何解决这些问题,实现精准投放呢?这就需要对广告投放进行优化,对于广告投放中出现的问题及时解决。
一、了解评估广告效果的基本方法
广告效果评估一般围绕点击量(曝光量)、到达量、二跳量、转化量四个指标来评估,每一个指标衡量不同阶段的广告投放数据,通过这些数据帮助我们分析广告投放中出现的问题。据此我们用一个漏斗图为大家展示一下:
其中我们要重点提一下,这里的“点击量”比“曝光量”更重要。 因为衡量广告效果一般是要测算“接触广告的目标受众”, 用曝光代码来统计并不准确。这是因为:
1、曝光代码触发次数 ≠ 广告曝光量(广告实际展示次数)
2、广告曝光量 ≠ 看到广告的人数(互联网广告形式千差万别,同样曝光量的广告,真正注意到/看到的人数差别可能巨大)
3、看到广告的人 ≠ 品牌的目标受众
这中间有3级差异,所以用曝光来测算“接触到广告的 目标受众”很不准确。 点击量才反应真实效果,曝光量作参考。
二、了解转化
广告投放离不开网站这个媒介资源,通过网站,我们要了解这些信息:
哪些地区带来的注册用户多,哪些搜索引擎带来的订单多,哪个广告渠道的转化率最高,哪个着陆页面带来的转化率最高等等。
通过掌握这些转化信息,帮助我们分析转化的情况,比如:
外部来源网站的转化量,可以直接体现该网站的网民质量,同时结合外部来源流量,体现各来源的转化率效果。
转化明细可以将每一个具体转化的效果剖析出来,作为广告CPS效果的评估依据。
三、了解流量
广告要实现转化,最重要的一点就是要有流量,流量从哪里来?哪些途径带来的用户多,哪些地区带来的多…..通过流量来源分析,帮助我们优化调整广告投放渠道和广告方案。比如:
1、根据外部来运网站流入量和二跳率排名,刷选优质来源,剔除劣质来源。
2、根据网站流量曲线规律,了解网民登录网站的习惯,选择最佳的广告内容发布时间。
3、根据网站流量时段变化,发现流量的规律和异常点,进而查找深层原因,及时发现问题,调整投放。
四、区别辨别流量质量
在广告投放过程中,常常遇见虚假流量,恶意点击等现象,因此评估流量的质量有四大要素:恶意点击、虚假流量、着陆页面内容访问、流量用户的活跃度。同时虚假、低质流量具有以下特征:
24小时的流量数据非常均匀,没有明显特征
以天为单位的流量图时高时低,波动非常剧烈
全国各个地区的点击、到达、二跳比率非常接近
着陆页面点击很少,几乎没有任何内容被关注
广告访客的浏览深度接近1层
总之,做好广告投放优化最终目的就是提高广告ROI,其实归根到底一句话,就是让花出去的每一分广告费都起作用,那么如何让每一个广告都起作用呢,其实就是让每一个广告都变得可衡量,让每个广告的最后效果都能用精确的数字来展现,这样精准度才会更高,广告价值也才会最大化。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29