京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么大数据难以给企业带来实际的商业价值
今年4月初,全球最大的独立软件公司之一、专注于数据和商业分析超过40年的美国SAS公司在美国奥兰多举办了 2017 SAS Global Forum 全球论坛。这家全球资深数据分析公司的 CEO Jim Goodnight接受了钛媒体记者采访。
Jim Goodnight曾在五年前被Forbes杂志誉为“数据分析之王”,在过去40年的时间里,SAS见证了全球数据分析、商业分析和大数据市场从无到有、从小到大的发展历程。
他对钛媒体表示,“SAS在中国市场在过去20多年的发展一直比较平稳,但过去几年却取得了爆发式增长。”
SAS公司最早起源于美国北卡罗来纳州立大学1966年的一项开发数据分析软件用于农业数据的研究。据IDC的统计,如今,SAS占全球高级和预测分析市场31.6%的份额,比前10名中其它9家相关厂商营收的总合还要多。
2016年,SAS在超过30种各类市场调查公司的报告中占据领导者地位,这包括分析、数据管理、数据整合、数据质量、数字营销、高级和预测分析、客户智能、零售分析、商业智能、安全解决方案等。
2016年,SAS在全球的业务继续保持稳步增长,2016年全球营收达32亿美元,增长主要来自于分析平台、云计算、反欺诈和安全智能解决方案,而且是在全球所有区域都实现了营业额的增长,特别是亚太区和拉丁美洲区成为增长最快的大区。
在谈到全新最新数据和商业分析趋势时,Jim Goodnight就SAS公司的业务来说,认为有三大趋势在拉动全球数据分析市场的发展,分别是物联网、新型分析和合作伙伴生态。
其中,物联网数据分析被视为下一个数据分析的金矿,已经给SAS公司带来了高速增长的业务机会。目前,SAS业务按行业来看的话,营收前三分别是银行(27%)、政府(15%)和专业服务(12%),而电信通信(6%)、制造(6%)、医疗(5%)、零售(4%)等被视为潜在大数据及分析行业市场却只占了SAS年度营收比例的个位数,说明这些行业还存在巨大的市场空间。
能拉动电信通信、制造、医疗和零售等潜在大数据及分析市场的一个抓手就是物联网。
物联网作为连接底层传感器设备与互联网的物理信息空间连接器,能够为电信通信、制造、医疗和零售等行业带来前所未有的视角,让企业管理者能深入到运营第一线实时掌握前沿动态,把前端实时数据与后台运营历史数据结合,就能产生巨大的商业价值。
Jim Goodnight认为传感器数据分析是一个巨大的机会,汽车里已有的传感器每天都在产生海量的数据。SAS公司在2016年推出了ESP实时流数据处理引擎,专门适用于靠近数据产生源的传感器数据实时分析,可每秒处理上百万个事件的分析与处理,通过内存计算可实现近乎实时的流数据分析。自2016年第四季度推向市场以来,已经为SAS公司带来了源源不断的物联网业务。
在SAS Global Forum 2017上,SAS与思科合作推出了业界首个经过Cisco Validated Design(思科验证设计)的Edge-to-Enterprise(边缘到企业)物联网分析参考框架。SAS EPS现在可运行在Cisco工业集成服务829路由器上,在工厂、卡车等靠近传感器的地方就近分析实时数据。2016年,SAS专门在底特律设立了办公室以支持在汽车制造行业中的业务增长。
在新型分析方面,云分析是一个重要的数据分析领域。SAS耗资10亿美金开发了面向云计算现代计算架构的云分析服务Viya,并于2016年开始推向市场。在SAS Global Forum 2017上SAS推出了全线的Viya产品,包括一系列可视化分析平台,把SAS Viya与传统软件版本的SAS 9结合起来就能形成一个企业内无处不在的数据分析环境。SAS Viya还提供了大量机器学习和人工智能功能,以满足当前日益增长的企业智能分析需求。
SAS Result(Result-as-a-Service)是另一个新型的云分析产品。这实际上不是一个产品,而是基于项目的专业服务。SAS公司CTO Oliver Schabenberger在接受钛媒体记者采访时表示,对于客户来说不再需要自己去学习、掌握、理解和运用SAS公司的各种数据分析软件产品,而只需要向SAS Result团队提出自己的数据分析需求和数据,由SAS Result数据分析团队在后端完成所有的数据分析和处理后,把结果返回给客户即可。如果涉及到相应的持续云服务等IT需求,也可以选择托管给SAS公司。
云分析产品推出以来,已经为SAS在2016年带来了9%的业务增长。随着2017年SAS推出更多Viya产品,有望进一步带来更高回报的营收。
Oliver介绍说,SAS Viya可运行在AWS之上以公有云方面运营和部署,也可以在企业内部部署在Cloud Foundry私有云之上为企业内部服务。
2017年,SAS将继续在包括分析、可视化、数据管理、客户智能、风险和欺诈等在内的领域持续,并在SAS Viya、人工智能、云计算和物联网等领域进行大量投入。在SAS Global Forum 2017上,Jim Goodnight和Oliver还多次演示了利用AWS Echo智能语音音箱来与数据分析报表交互,这将创造新的数据分析互动形式。
推动全球数据分析市场增长的第三大动力来自合作伙伴生态。随着大数据的崛起和数据分析市场的高营收前景,越来越多的独立软件商、系统集成商和增值分销商开始进入数据分析业务。Jim Goodnight表示,2016年SAS全球销售增长的30%由合作伙伴贡献,他们满足了客户的个性化需求和最终用户需求。SAS全球合伙伙伴生态形成规模化发展,从一个侧面说明了全球数据分析生态已经达到了一定的规模,开始成为拉动市场增长的主力。
SAS的一份调查显示,近几年全球大数据取得了巨大的发展,但大数据仍然难以给企业带来实际的商业价值。
SAS全球副总裁Jill Dyche认为,现在所有的企业都专注于把大数据收集和存储到大数据平台上,而忘记了其实分析才能真正给大数据带来商业价值。由于大数据的收集、处理和准备等前期阶段耗费的时间过长、成本过高,导致企业高层开始失去耐心,这是当前大数据产业面临的困境。
对于数据分析实践来说,如果想要获得企业高层以及各业务的认可,就要建立全员数据分析文化,而这是一个过程。尤其是当企业各层管理者的KPI里并没有涉及数据分析或数据分析无法影响这些KPI的时候,企业实际上很难接受在数据分析方面的投入,更不用说懂得数据分析语言的专业人才少之又少。
Jill建议企业在实践数据分析的时候,可参考三大“最佳实践”:
在谈到全球企业数字化转型的时候,Jill认为,IT组织和厂商的数字化转型更为重要也更为关键。
IT组织和厂商作为企业数字化的技术合作伙伴,如果自身转型都不能成功,又何谈帮助企业成功完成数字化转型呢?现在,很多传统IT厂商在向现代化的数字化技术过程的时候都出现了身份危机,很难在新的时期成功完成自身产品、服务和解决方案的创新、颠覆与转型,比如PC厂商就在这一波数字化大潮中面临巨大的挑战。
联想高级分析总监鲍若愚在SAS Global Forum 2017上分享了联想在数据分析方面的初步实践,鲍若愚认为联想的数据分析还处于起步阶段,联想数据分析团队还在争取获得联想内部各产品线和高层的认可。联想数据分析团队目前位于新加坡,在联想C级别高管中还无一人负责数据分析,这说明数据分析远未进入联想的战略管理视野。中国企业特别是中国IT企业在向数字化转型的过程中,还有很长的路要走。
2017年1月,工信部公布了《大数据产业发展规划(2016-2020年)》,提出了到2020年的发展目标:大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右。此外,还将培育一批专业化数据服务创新型中小企业、10家国际领先的大数据核心龙头企业和500家大数据应用及服务企业,初步形成大数据产业体系。
随着中国大数据市场的全面起动以及中国企业向“互联网+”的数字化转型继续推进,SAS公司期待在中国市场迎来更大的发展。“预期SAS中国市场今年增长率保持两位数(百分比)”,已经74岁的Jim Goodnight对中国的数据分析市场非常有信心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27