
工业大数据的3大来源和关键问题
近年来,随着德国工业4.0和美国工业互联网为代表的新工业革命深入发展,以及“中国制造2025”、“互联网+”行动计划与“促进大数据发展行动纲要”的颁布实施,工业大数据得到了越来越多的关注。这里分享一下我们的思考与实践。
工业大数据三大来源
一、企业信息系统、装备物联网和企业外部互联网是工业大数据的三大来源:
企业信息系统存储了高价值密度的核心业务数据。上世纪60年代以来信息技术加速应用于工业领域,形成了产品生命周期管理(PLM)、企业资源规划(ERP)、供应链管理(SCM)和客户关系管理(CRM)等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、物流供应数据以及客户服务数据,存在于企业或产业链内部,是工业领域传统数据资产。
近年来物联网技术快速发展,装备物联网成为工业大数据新的、增长最快的来源,它实时自动采集了生产设备和交付产品的状态与工况数据。一方面,机床等生产设备物联网数据为智能工厂生产调度、质量控制和绩效管理提供了实时数据基础;另一方面,2012年美国通用电气公司提出的工业大数据(狭义的),专指装备使用过程中由传感器采集的大规模时间序列数据,包括装备状态参数、工况负载和作业环境等信息,可以帮助用户提高装备运行效率,拓展制造服务。
当前互联网与工业深度融合,企业外部互联网已成为工业大数据不可忽视的来源。本世纪初,日本企业就开始利用互联网数据分析获取用户的产品评价,时至今日,小米手机利用社交媒体数据成功实现产品创新研发。此外,外部互联网还存在着海量的“跨界”数据,比如影响装备作业的气象数据、影响产品市场预测的宏观经济数据、影响企业生产成本的环境法规数据……
工业大数据实施的关键问题
二、数据质量、多源关联和系统集成是工业大数据实施的关键问题:
拥有大数据不是目的,发掘其价值才是关键。由企业信息化数据、装备物联网数据和外部互联网数据汇聚而成的工业大数据,蕴藏着巨大价值。例如,通过分析用户使用数据改进产品,通过分析现场测量数据提高工件加工水平,通过工况数据进行产品健康管理等。
笔者认为实施工业大数据项目需要关注以下3个关键问题:
1、数据质量控制问题
原始数据(生数据)质量决定分析结果的质量。企业信息系统数据质量仍然存在问题,例如2014年某大型机车企业ERP系统中近20%物料存在“一物多码”问题。装备物联网数据质量堪忧,某大型制造企业1个月的状态工况数据中,无效工况(如盾构机传回了工程车工况)、重名工况(同一状态工况使用不同名字)、时标混乱(当前时间错误或时标对不齐)等数据质量问题约30%。
2、多源数据关联问题
层次化的物料表(Bill Of Material, BOM)定义了企业信息系统数据的核心语义结构。针对跨生命周期的研制BOM和实例BOM间结构失配问题,我们提出了中性BOM模型,并以此为核心,向前关联设计制造BOM,向后关联服务保障BOM,形成星型结构,极大地降低了数据关联的复杂度。同时,针对装备物联网数据和外部互联网数据,可以根据其绑定的物理对象(零部件或产品)与相应的BOM节点相关联。从而以BOM为桥梁,关联3个不同来源的工业大数据。
3、大数据系统集成问题
工业大数据其来源更加广泛,并且装备物联网数据(半结构化数据)和外部互联网数据(非结构化数据)都要与企业信息系统(结构化数据)进行集成,因此要重构数据支撑平台,甚至替换“旧”系统。
工业大数据实施工程案例
三、工业大数据分析提升工程装备服务保障水平,这里分享两个工程案例:
1、工业大数据提供故障分析新手段
液压系统是工程机械的关键部件。2013年我们发现液压系统的油缸密封套腐蚀故障数量异常。于是依据企业信息系统记录的液压系统维修历史数据,通过比对相关状态工况数据(装备物联网数据),搜索推荐与故障车辆关系密切的工况,发现车辆油缸换向频率的波动幅度与这些故障高度相关。
进一步,引入互联网上的行政区划数据和历年工程建设数据(外部互联网数据)后,发现2012~2013年期间这些典型故障均发生在沿海省份,从而推断出盐雾环境是导致密封套腐蚀故障的主要诱因。
2、工业大数据提升备件需求预测精度
随着工程装备增量市场增长乏力,以维修保障为主的存量市场成为企业盈利新的增长点。我们利用了企业信息系统中的备件销售订单、采购订单和备件库存状态数据,以及工程物联网采集到的工况数据和外部互联网数据(如每个省的GDP,建筑、交通等规划数据)。
针对30个省市区进行了备件需要预测,平均预测精度为82%,每旬备件需求预测误差在5件或真实值的20%以内。库存水平控制在一个较低的稳定水平,仅为原来库存水平的48%。同时,因为考虑到了20天的配货周期,基于预测的补货策略可以保证现货满足率,消除紧急临时订单。如果按备件库存占有资金1亿元计算,可节约库存资金占用5000万元。
工业大数据是实现智能制造的基础原料,是提升工业生产力、竞争力、创新力的关键要素。然而必须看到,工业大数据是一个正在发展的学科领域,其内涵外延、模型理论、技术方法及其实施策略等还有待发展与创新。唯有结合中国国情认真实践,才能走出中国工业大数据自主之路,实现制造强国的战略目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16