京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在智能工业中的应用
目前,第四次工业革命蓬勃兴起,工业发展迅速,产业结构的转型升级成为各国提高竞争力的新目标。从美国的“工业互联网”、德国的“工业4.0”到中国的“中国制造2025”发展战略都提出了相似的技术核心内容,包括大数据、云计算、人工智能等在内的新技术层出不穷,这些新技术成为带动产业变革,推动工业经济创新发展不可代替的原动力。
大数据和智能工业是人类进行生产管理的IT框架上非常重要的两方面,两者颠覆了经典管理学的工业管理原理和中枢维度,这也就是说,人类的管理思想、管理制度和方法正在发生着一场自上而下彻底的变革。
大数据时代的特征
1、方式比数据本身更值钱
在现在的智能工业中,大数据被大家经常提起。在全球范围内对大数据的定义里面,特别强调大数据是企业专有的信息财产,已经成为企业固有资源的一部分,但我们不仅要关注数据,更要关注数据的处理方式。数据量自身的大小并不是判断数据价值的核心标准,数据的实时性和准确性才会对数据的价值产生直接的影响,这也是我们需要重视数据处理方式的重要原因。
2、数据的形式具有多元化
我们对数据形式的常规理解一般仅局限于结构化数据和非结构化数据。其实,最终的大数据可以从人类和机器两大核心模块产生,在智能科技和现代工业相融合的过程中,我们更加提倡多元化的数据形式,让其能够为不同的结构化数据进行服务,同时我们需要加强数据的采集、分析,让它成为智能工业的核心工作。
3、大数据让信息更加透明、透彻
大数据能在现代化的工业供应链中,让我们更准确的把握从采购、生产、物流到销售整个过程,能够帮助我们分析客户的需求,它的应用场景包括了实时核心、交易、服务、后台服务等。我们通过手机、传感器、3D打印机和电脑等载体,可以保障生产,满足法律法规的要求,改善客户服务质量,也可以提前预测可能产生的生产经营问题并作出提前的防范,降低可能产生的损失。
大数据的发展方向
1、理性看待大数据
“中国制造2025”的核心是生产、物流、销售的智能化,以及互联网与制造业相结合。随着传统数据库和数据仓库的运行越来越缓慢,很难满足企业的发展需求,这就对大数据的处理提出的新的要求,数据的灵活性也成为推动大数据技术发展的重要推动力。
2、数据湖
现在的大数据领域被看作是“数据湖”与“数据藻泽”的状态之争。无论学术界如何去诠释,其核心是强调一种基于对象的数据存储方式将收集来的数据以其最原生的格式(多结构化的)存储下来留作日后使用。“数据湖”具有很高的价值定位,它代表了一种可扩展的基础架构,非常经济且超级灵活。
3、自主大数据成为主流
目前,IT行业发展的瓶颈阶段正在缓解,很多商户和科学家可以借助相关工具实现对大数据的直接操作,这种自助服务的大数据模式将成为未来大数据行业发展的一种趋势。这种服务允许商户通过自助服务接触大数据,还可以帮助开发者、数据科学家和数据分析师直接进行数据探索和处理工作。业务价值驱动大数据创新,传统大数据不再成为我们讨论的大数据主题,我们需要了解更多的是业务创新,数据变现和业务场景的探索。
我们要理性的看待大数据,在关注数据量的同时,更应该重视数据的处理方式。在工业4.0时代,尽管大数据技术自身在快速的发展,但是它的成长一定是一个长期的过程,在不同的阶段,打造不同的互联网技术,特别在中国制造2025的变革中,大数据一定是未来企业数据技术的核心纽带。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27