
大数据、云计算、物联网与建筑如何融合
1. 大数据技术
大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合。建筑业是产生大量数据的行业之一,又是数据电子化程度较低的行业。在“互联网+”时代,建筑业数据的价值和重要性将逐步体现,充分运用大数据制定企业发展战略、进行战略决策。研究建立建筑业大数据应用框架,统筹政务数据资源和社会数据资源,建设大数据平台,将各工程项目生命周期中产生的数据以及在运维阶段的能耗数据和设施运维数据进行收集、处理和加工,通过大数据的分析与挖掘,为各方提供更有价值的数据服务,提升行业、企业和项目的整体管理水平。
2. 云计算技术
云计算是推动信息技术能力实现按需供给、促进信息技术和数据资源充分利用的全新业态。建筑业信息化基础设施相当薄弱,云计算的成熟为建筑业信息化带来了极好的机遇。随着云计算的深入运用,政府和建筑企业可以利用云计算改造现有系统,开展工程建设管理及设施运行监控等方面应用,而且以用为主,可以降低信息化总成本,特别解决中小企业信息化投入问题。云平台可以忽略硬件单点故障,提升应用系统的可用性,应对海量访问。同时,采用云平台可以降低用户推广应用过程安装部署工作的难度和工作量,改善用户操作体验。
3. 物联网技术
物联网是新一代信息技术的高度集成和综合运用,为实现施工现场各类原始基础数据的持续采集提供了可能性。利用现场监测、无损检测或各种传感技术进行建筑安全、设备运行状态、施工环境监测、现场人员管理、进场物资管理等,实现数据的自动采集与传输,在专业软件的辅助下,完成对大型建筑施工状况的评估和预警。此外,在智慧城市、智能建筑方面需要大量采用物联网技术。在建筑业推动物联网技术的广泛应用,还需要结合建筑业行业特点,研发成本低、传输性能稳定、精确度高的传感设备、仪器仪表、配套软件,特别要注重与信息化的集成应用。
4. 3D打印技术
3D打印是一种以数字模型为驱动源,通过增材打印的方式来构造物体空间形态的成型技术。通过3D打印建筑技术,已经能够实现一些简单的房屋和构件的打印,但是如果要运用到复杂的建筑打印上,还需要进一步的创新发展,解决软件、硬件设备、材料、配筋、行业标准等诸多难题。建筑业应积极跟踪工业领域3D打印应用,并结合建筑业自身特点,研究突破。通过3D打印技术生产出建筑部品及构件,特别是针对曲线异形等复杂建筑或构件,降低施工的难度与风险。
5. 智能化技术
智能化是在计算机技术的基础上,结合了传感器技术、GPS 定位技术、网络技术、人机交互技术等衍生出的更高层面的技术。产业转型升级发展,需要工业化智能制造。全位置焊接机器人已应用在国内超高层建筑钢结构施工中。手持智能终端在施工现场质量、安全检查等管理工作中初步得到应用。引入这些先进技术,利用 “工业4.0”理念和智能制造技术,能全方位改进生产施工工艺、提升生产力。
信息化标准
建筑业信息化的标准规范是信息化建设中的一项重要的基础性的系统工程,也是信息系统建设推广成功的关键因素。要重视标准化在信息化建设过程中的重要作用,以标准化助推信息化,以信息化带动标准化,推动标准化与信息化互相促进融合。建筑业信息化标准还需要强化顶层设计,进一步完善标准化管理体系和技术体系,重点加快BIM技术以及数据交换、文图档交付等基础数据和应用标准,为实现全产业链信息互通、提升信息应用价值打下基础。
以市场上天天建道这款产品为例,
(一 )、施工一线用户 (项目执行层 )
1、各种沟通交流 :快速传递工作信息 ,接发工作指令 ,增强沟通能力 ,提升管理效率
2、随时记录施工情况 :组织、协调、安排具体事项 ,图文并茂 ,清晰表达 ,信息可追溯
3、分享展示工作成果 :记录自己的工作轨迹与内容 ,让同事、领导看到你的付出与努力
4、笔记云存储 :各种重要信息、备忘录 ,随手记、随时看 ,永不丢失
5、查阅工程资料 :纸质资料电子化 ,一次上传 ,永久查阅 ,随时随地 ,想看就看
6、办公移动化 :请示、汇报、申请等日常办公在线完成 ,有记录有痕迹 ,快速获得反馈信息
7、工作与生活分离 :形成独立的工作圈与生活圈 ,互不干扰 ,聚焦工作 ,专心专注
(二 )、非施工一线用户 (项目领导或公司管理层 )
1、实时获取现场各种动态信息
2、随时决策及指导指挥工作
3、管控项目
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23