
简单易学的机器学习算法—马尔可夫链蒙特卡罗方法MCMC
对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)方法,其中Metropolis-Hastings采样和Gibbs采样是MCMC中使用较为广泛的两种形式。
MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。
一、马尔可夫链
1、马尔可夫链
设Xt表示随机变量X在离散时间t时刻的取值。若该变量随时间变化的转移概率仅仅依赖于它的当前取值,即
也就是说状态转移的概率只依赖于前一个状态。称这个变量为马尔可夫变量,其中,s0,s1,⋯,si,sj∈Ω为随机变量X可能的状态。这个性质称为马尔可夫性质,具有马尔可夫性质的随机过程称为马尔可夫过程。
马尔可夫链指的是在一段时间内随机变量X的取值序列(X0,X1,⋯,Xm),它们满足如上的马尔可夫性质。
2、转移概率
马尔可夫链是通过对应的转移概率定义的,转移概率指的是随机变量从一个时刻到下一个时刻,从状态si转移到另一个状态sj的概率,即:
记表示随机变量X在时刻t的取值为sk的概率,则随机变量X在时刻t+1的取值为si的概率为:
假设状态的数目为n,则有:
3、马尔可夫链的平稳分布
对于马尔可夫链,需要注意以下的两点:
1、周期性:即经过有限次的状态转移,又回到了自身;
2、不可约:即两个状态之间相互转移;
如果一个马尔可夫过程既没有周期性,又不可约,则称为各态遍历的。
对于一个各态遍历的马尔可夫过程,无论初始值π(0)取何值,随着转移次数的增多,随机变量的取值分布最终都会收敛到唯一的平稳分布π∗,即:
且这个平稳分布π∗满足:
其中,为转移概率矩阵。
二、马尔可夫链蒙特卡罗方法
1、基本思想
对于一个给定的概率分布P(X),若是要得到其样本,通过上述的马尔可夫链的概念,我们可以构造一个转移矩阵为P的马尔可夫链,使得该马尔可夫链的平稳分布为P(X),这样,无论其初始状态为何值,假设记为x0,那么随着马尔科夫过程的转移,得到了一系列的状态值,如:x0,x1,x2,⋯,xn,xn+1,⋯,,如果这个马尔可夫过程在第n步时已经收敛,那么分布P(X)的样本即为xn,xn+1,⋯。
2、细致平稳条件
对于一个各态遍历的马尔可夫过程,若其转移矩阵为P,分布为π(x),若满足:
则π(x)是马尔可夫链的平稳分布,上式称为细致平稳条件。
3、Metropolis采样算法
Metropolis采样算法是最基本的基于MCMC的采样算法。
3.1、Metropolis采样算法的基本原理
假设需要从目标概率密度函数p(θ)中进行采样,同时,θ满足−∞<θ<∞。Metropolis采样算法根据马尔可夫链去生成一个序列:
其中,θ(t)表示的是马尔可夫链在第t代时的状态。
在Metropolis采样算法的过程中,首先初始化状态值θ(1),然后利用一个已知的分布生成一个新的候选状态θ(∗),随后根据一定的概率选择接受这个新值,或者拒绝这个新值,在Metropolis采样算法中,概率为:
这样的过程一直持续到采样过程的收敛,当收敛以后,样本θ(t)即为目标分布p(θ)中的样本。
3.2、Metropolis采样算法的流程
基于以上的分析,可以总结出如下的Metropolis采样算法的流程:
初始化时间t=1
设置u的值,并初始化初始状态θ(t)=u
重复一下的过程:
令t=t+1
从已知分布中生成一个候选状态θ(∗)
计算接受的概率:
从均匀分布Uniform(0,1)生成一个随机值a
如果a⩽α,接受新生成的值:θ(t)=θ(∗);否则:θ(t)=θ(t−1)
直到t=T
3.3、Metropolis算法的解释
要证明Metropolis采样算法的正确性,最重要的是要证明构造的马尔可夫过程满足如上的细致平稳条件,即:
对于上面所述的过程,分布为p(θ),从状态i转移到状态j的转移概率为:
其中,Qi,j为上述已知的分布。
对于选择该已知的分布,在Metropolis采样算法中,要求该已知的分布必须是对称的,即Qi,j=Qj,i,即
常用的符合对称的分布主要有:正态分布,柯西分布以及均匀分布等。
接下来,需要证明在Metropolis采样算法中构造的马尔可夫链满足细致平稳条件。
因此,通过以上的方法构造出来的马尔可夫链是满足细致平稳条件的。
3.4、实验
假设需要从柯西分布中采样数据,我们利用Metropolis采样算法来生成样本,其中,柯西分布的概率密度函数为:
那么,根据上述的Metropolis采样算法的流程,接受概率α的值为:
代码如下:
'''
Date:20160629
@author: zhaozhiyong
'''
import random
from scipy.stats import norm
import matplotlib.pyplot as plt
def cauchy(theta):
y = 1.0 / (1.0 + theta ** 2)
return y
T = 5000
sigma = 1
thetamin = -30
thetamax = 30
theta = [0.0] * (T+1)
theta[0] = random.uniform(thetamin, thetamax)
t = 0
while t < T:
t = t + 1
theta_star = norm.rvs(loc=theta[t - 1], scale=sigma, size=1, random_state=None)
#print theta_star
alpha = min(1, (cauchy(theta_star[0]) / cauchy(theta[t - 1])))
u = random.uniform(0, 1)
if u <= alpha:
theta[t] = theta_star[0]
else:
theta[t] = theta[t - 1]
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
plt.sca(ax1)
plt.ylim(thetamin, thetamax)
plt.plot(range(T+1), theta, 'g-')
plt.sca(ax2)
num_bins = 50
plt.hist(theta, num_bins, normed=1, facecolor='red', alpha=0.5)
plt.show()数据分析师培训
实验的结果:
对于Metropolis采样算法,其要求选定的分布必须是对称的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18