
工业大数据应用:消除数据信息碎片化
大数据、人工智能和人类智慧,成为智能数据时代的三大要素。数据的积累,可以为人类提供更多更细的洞察分析,人类经验得以增强,人类智慧得以增长。
刚刚过去的2016年,是大数据从概念到务实落地的一年。在过去的一年内,互联网行业、电信行业、金融行业、房地产行业、汽车行业、娱乐行业、教育行业、零售行业、能源行业、医药行业、政府机关等都在不同程度的接触和实施大数据。
大数据产业发展了两年后,从探索阶段进入了应用阶段。数据被定义成重要的资源,正在得到企业的重视,在经营过程中发挥着重要的作用。企业看到了数据价值,从被动了解走向主动拥抱。数据如何同业务场景结合,如何变成生产力,如何指导业务决策成为企业最关心的问题。
数据本身是没有价值的,必须同商业需求结合在一起,才能够产生化学反映,体现商业价值。大多数企业还是将精力放在数据架构、技术平台、数据采集等探索工作,没有理顺数据价值应用的发展路径,也没有从数据中看到真正的商业价值,看到智慧的力量。
很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。由于业务部门需求不清晰,大数据部门又是非盈利部门,企业决策层担心投入比较多的成本,导致了很多企业在搭建大数据部门时犹豫不决,更多的企业是处于观望尝试的态度,从根本上影响了企业在大数据方向的发展,也阻碍了企业积累和挖掘自身的数据资产。因此,这方面需要大数据从业者和专家一起,推动和分享大数据应用场景,让更多的业务人员了解大数据的价值。
大数据时代,企业面临海量的数据,其中80%的数据为非结构化数据。企业需要对所有数据进行整合,将数据作为一种资产进行管理。
数据是对经济和用户需求的反馈,利用数据分析和数据挖掘可以帮助企业发现商业机会并实现数据价值。数据价值可以简单总结为:帮助企业提高效率降低成本、增加商业收入和指导商业决策。数据应用是数据价值的具体体现,智能数据时代的数据应用主要集中在客户分析、数字运营、精准营销、风险控制、智能决策等几个方面。
商业竞争的激烈让时间的价值凸显,很多产品决策和商业决策必须要在短时间内作出,否则将会失去市场先机,并有可能被竞争对手模仿、超越。数据对商业决策的影响力正在不断加强,数据支撑的商业决策分析对时间和准确度的要求越来越敏感。在这种情况下,智能数据时代对企业对要求越来越高,对数据处理技术、数据分析、数据决策要求也将越来越严格。
企业启动大数据最重要的挑战是数据的碎片化。如果不打通这些数据,大数据的价值则非常难挖掘。大数据需要不同数据的关联和整合才能更好的发挥理解客户和理解业务的优势。如何将不同部门的数据打通,并且实现技术和工具共享,才能更好的发挥企业大数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29