京公网安备 11010802034615号
经营许可证编号:京B2-20210330
论大数据对媒体融合的推进作用
自2012年以来,大数据成为行业间转型升级的一个关键词。大数据的应用,颠覆了各个行业固有的运作模式,对行业变革产生深远影响。在传媒领域,大数据的应用推进了媒体融合的进程。本文探讨了大数据对媒体融合的影响及作用,梳理了大数据在媒体融合中的功能。
《中国互联网络发展状况统计报告》数据显示,截至2016年6月,中国网民数量达到7.10亿,手机网民数量达到6.56亿。[1]越来越多的人集聚在网络空间,人们的信息环境、网络的行为都形成了海量的数据信息。移动互联网的繁荣,使得大数据更加倍受关注。
自2012年以来,大数据成为行业间转型升级的一个关键词。麦肯锡咨询公司定义“大数据”为超出了典型数据库软件的采集、储存、管理和分析等能力的数据集。[2]伴随着数据量的不断持续增长,云计算等高新技术赋权,使得数据的提取、处理和分析得以实现。大数据能够在海量的数据中抓取颇具价值的数据,从而为各行各业提供组织、决策参考,把零散数据集成化,总结出基本规律,大数据便成为了核心资源。大数据的应用,变革了各个行业固有的运作模式,对行业发展产生深远影响。在传播领域,大数据的应用推进了媒体融合的进程。
一、大数据思维对媒体融合的影响
大数据时代背景下,大数据对传媒业的影响首先表现为思维上的巨大作用。大数据思维主要指,总体样本取代随机样本;对不精确的容忍度增加以及相关关系取代因果关系。[3]27大数据思维的运用,进一步助推媒体融合,对媒体融合造成突出影响。
(一)前沿性
大数据的应用减少了媒体获得数据、内容的时间成本和经济成本,使得同一平台上能够融合多种内容,不同介质的媒体形态互联互通,促进了媒体融合的发展。人民日报在媒体融合发展的过程中,搭建起全媒体发展核心平台即“中央厨房”。“中央厨房”实现了传媒内容的一体化策划、一次采集之后生成适应不同平台传播的多种内容,推出了多款融媒体新闻产品。“中央厨房”的良好运营,是前沿性大数据思维的突破。2016年11月,南方报业集团整合优势资源,成立南都光原娱乐有限公司,依托大数据获取在传媒领域最有价值的IP,开创纸媒与资本融合发展。[4]凭借大数据这一前沿科技的应用,使得“中央厨房”、南方都市报业集团探索的媒体融合发展之路更加倍受瞩目。
(二)操作性
大数据思维的应用,为媒体融合指明了一条切实可行的路径,实际操作性效果明显。媒体运用大数据思维,可以提升媒体运营的整体水平。一方面,媒体从业者采用大数据技术挖掘分析内容,得到受众关注的焦点内容,追踪内容在传输过程中的变化发展,使得传播内容更容易吸引受众的眼球,针对性更强。另一方面,基于大数据的网页数据抽取技术,媒体从业者可以精准表达内容,使得内容更加“原汁原味”。此外,基于受众评论、反馈数据,媒体能够与受众展开良性互动,从而大幅度提升操作性。
(三)传播性
媒体运用大数据思维,转变传统媒体传播的方式和形式,实现精准传播和预测传播。媒体从业者运用大数据分析受众需求之后为受众推送定制化内容。定制化推送内容,媒体从业者做到了具体分析个人需求,不再是“点对面”式的为受众提供相同内容,而是为受众“量身打造”提供个性化、差异化的内容,这就增强了内容传播的实效性。此外,在大数据的作用下,媒体基于多种形态的传播平台提取内容。内容生成之后,可以实现跨媒体、跨平台传播,媒体之间的多屏联动也就取得了长足发展。大数据思维的传播性进一步推进了对媒体发展和传播格局的预测,通过大数据传播思维,传媒未来似乎更加清晰可见。
大数据思维对媒体融合赋予了前沿性、操作性、传播性的影响。大数据在媒体融合中的功能和作用同样值得关注。
二、大数据在媒体融合中的功能
在媒体融合发展的过程中,大数据的成效是有目共睹的,大数据之于媒体融合有助于实现传播主体复合化、传播渠道多维化及传播受众立体化。
(一)复合化传播主体
大数据时代,传播主体不再局限于专业化的媒体从业者,受众同样能够生成内容在自媒体上传播。媒体从业者更加依赖于受众传播的内容,大数据监测、分析内容源,寻找到热点内容,以此来生产高质量的内容。传受双方都构成传播的主体,传播主体是复合化的。同时,大数据时代,对于专业的媒体从业者要求更高,媒体从业者的业务能力要向数据化采编转型。媒体从业者在数据化挖掘内容之后,要摆脱“搬运工”的不利角色,对内容进行分析加工,找寻到内容之间的相关联系,发现最具有新闻价值的内容。在内容的呈现上,媒体从业者应该以新闻图片、视频、音频等形式可视化呈现内容,以此来强化内容的渲染力,增强内容的传播力度。2016年两会,人民日报中央厨房、新华社、澎湃新闻等媒体推出了多款解读两会的可视化新闻,体现了媒体从业者数据化采编能力的提升。大数据背景下,媒体从业者的职业能力要求不再是单一的图文音频视频制作、加工,而是复合化的数据化采编。应用大数据,媒体从业者的职能也趋于复合化。媒体从业者一方面是信息的把关人,另一方面善于发现受众的需求,为用户提供个性化服务。大数据背景下,传播主体是复合化的,这就使得生成的内容能够适合不同平台上传播,助推媒体之间内容的融合。
(二)多维化传播渠道
媒体获知数据,需要立足于传统媒体、新兴媒体,大数据搜集相关数据。数据的来源,不仅仅依托于单一的传播渠道,而是多维化、交互式的传播渠道,这样,数据的搜集便更加详尽。同样,数据加工成内容之后,连接内容的渠道也是多维化的,受众接收内容的方式是多样的,这也使得内容的覆盖面更加广泛,增加了内容的实际到达率。利用大数据分析,媒体从业者还可以知晓受众偏爱哪一种传播渠道接收内容,知晓内容投放到哪些传播渠道进行组合传播取得的效果更佳。不同形态的内容可以选择取得传播效果最大化的传播渠道进行传播,使得内容的传播效果得以最大限度地优化。视频、音频等形态的内容,不仅可以通过网络、电视渠道,还可以通过移动客户端、微博、微信渠道进入受众视野。在大数据背景下,多维化的内容连接渠道助推着媒体之间渠道的深度融合。
(三)立体化传播受众
大众传播时代,传播受众是一个泛化、抽象的概念,媒体从业者只能够基于从业经验判断内容的传播价值及受众对内容的喜好。媒体从业者的主观判断,往往会造成受众对内容的“置之不理”,使得内容传播效果不及预期。媒体从业者即使是获得受众的反馈,也只是获知受众片面的信息,对受众也只能是模糊的认知。而在大数据时代,凭借大数据技术,受众的个人形象是清晰化、立体化的。受众登录各种媒体平台,注册信息留下的个人数据,浏览内容生成的阅读数据,分享、转载、下载内容留下的个人行为数据等等,都会成为媒体分析受众的基础。客观、详尽的数据为受众“画像”,还原受众在现实生活中的真实面貌。媒体从业者对受众的兴趣爱好、个人特征、内容需求等有着深刻的感知。此时,媒体从业者能够知晓受众热衷何种内容、哪种传播平台,受众的需求变得透明化。基于大数据、云计算等网络技术发展起来的移动手机客户端,之所以能够实现传播主体对传播受众“点对点”式的精准传播,是因为运营手机终端的媒体从业者对受众需求的精准把握。媒体从业者运用大数据,构建受众形象,分析受众需求,进一步助推传媒内容和形式的创新。
大数据在媒体融合的过程中,有着复合化传播主体、多维化传播渠道以及立体化传播受众的功能。大数据对媒体融合的作用也是显著的。
三、大数据对媒体融合的作用
大数据是数据、技术及应用三者之间的统一,大数据的应用加剧了媒体融合的进程;净化了网络空间,使得传媒内容更加真实、健康、有效;也为媒体进行媒体融合构建了可望成功的模型。
(一)催化剂
大数据的应用,加速了媒体融合的进程。大数据已经融入到了传播采编、传播方式、传媒制播、传媒效果评估等环节之中,大数据成为了媒体的中枢,指挥着媒体的运营。媒体运用大数据,大大提升了发现内容的效率和能力,缩短了媒体之间生产内容的鸿沟,有助于消除内容边界。大数据对媒体进行内容赋权,降低了内容的准入门槛,生产出更符合受众“口味”的优质内容,最大化地实现内容的价值。传统媒体为了适应时代的发展,转型成为新兴媒体,推出传统媒体网页版,微博、微信平台以及移动客户端。传统媒体依托于新兴媒体平台,制作符合新兴媒体传播特性的内容,走上了媒体融合的路子。在这个过程中,大数据对媒体转型升级的作用功不可没。
(二)净化剂
在媒体融合发展的过程中,内容可以通过不同形态、不同介质的媒体平台传播到受众面前。移动互联网更是便捷化生产、获取内容的平台。在移动互联上,内容不再是稀缺资源,大数据生态环境中,内容呈井喷式地增长。由于受众在移动互联网上发声的即时性以及媒介素质水平参差不齐,使得移动互联网上面充斥的内容纷繁复杂、良莠不齐。热点事件发生之后,围绕热点事件的一些虚假内容往往会在移动互联网上肆意传播。这些虚假内容歪曲事实,以耸人听闻的标题,赚取受众的浏览点击率。虚假内容的传播,不利于网络空间的良好运行,也会对媒体的公信力造成消极的影响。大数据对净化网络空间,还原事件真相显得尤为必要。利用大数据建构的数据取证公众服务平台,通过实时数据取证,受众可以举报虚假信息来维护自身的合法权益。[5]在媒体融合的过程中,大数据起到了净化、过滤内容的作用,与真相的契合度更高。
(三)塑化剂
大数据从思维到现实层面引领媒体融合和媒体发展的未来。大数据能够“化无形为有形,于芜杂中见规律”,从而把抽象事物形塑为有形和可见的事物,具有塑化剂的作用。利用大数据,推出的内容注重与受众互动,内容的形式更加形象生动。2010年10月,英国《卫报》采用数据地图的方式,报道了伊拉克战争人员伤亡情况。数据地图的制成基于大数据分析维基解密数据和谷歌地图定位的应用。在这份数据地图上,受众点击地图上的地点,都会标注该地点的人员伤亡人数、原因等信息。数据地图三维式地呈现内容,给予受众强烈的视觉冲击力,增强了受众的记忆。大数据的应用,是《卫报》制作数据地图的充要条件,大数据为媒体融合指明了发展方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27