京公网安备 11010802034615号
经营许可证编号:京B2-20210330
视频大数据渐成趋势:三大因素驱动 四大领域发挥
近年来,视频数据的价值逐渐得到大家重视,通过计算机替代人力来挖掘视频数据价值正成为数据所有者非常关心的问题。但是,视频数据除了具备一般大数据的典型特征,还具有数据维度更多、数据量更大、非结构化等问题,视频大数据分析技术的难度显而易见。
尽管如此,无论是IT巨头公司,还是具有一定研发能力的创业团队,在三大因素驱动下开始在计算机视觉、深度学习领域进行布局。
驱动因素之一:累积的视频数据价值量巨大
从量的角度看,视频监控数据和互联网视频内容数据近年来有了大幅增加,为数据挖掘提供了丰富资源。据IDC的《The Digital Universe in 2020》统计,2012年全球有分析价值的数据中有一半是监控视频数据,这个比例在2015年上升到65%,速度是每两年翻一番。在国内,我们大约有3000万台监控摄像机,每月将生成60EB的视频数据,中国已经成为世界最主要的视频监控市场。
而在互联网上,随着移动互联网的快速发展,多媒体视频与图像应用越来越广泛。这些视频应用每时每刻产生海量的视频数据,目前已约占人们通讯数据量的80%。
从质的角度看,随着监控技术往高清化、网络化、智能化发展,高分辨率和高帧率已成为视频监控主流需求。视频数据的质量越高,其分析价值越大。
驱动因素之二: 技术的成熟
以深度学习算法为基础的计算机视觉技术的进步,为视频大数据分析提供了强大的计算和分析工具。反过来,巨量的视频数据也为机器训练提供了丰富的素材,“大数据是人工智能的燃料”。
驱动因素之三: 政策的推动
近年来,在“平安城市”的建设框架下,摄像头等硬件设备的普及率明显上升,后台监控平台软件也得到了一定程度的应用。政府希望能够使用视频数据降低人工投入,提高社会管理的能力。公安部、发改委等部委先后发布一系列政策,大力推进“大联网”战略。深化视频图像信息预测预警、实时监控、轨迹追踪、快速检索等应用。
同时,随着硬件和基础软件平台渗透率的不断提升,用户对视频监控系统的关注点已经从单纯的系统建设,向运营、管理、应用,尤其是实战应用方面发展,要从现在的“看得见”进步到“看得懂”。从客户类型结构看,原来平安城市更多是来源于交警部门和公安部门的建设需求,未来政府的其他部门如刑侦、交通运输部门、司法等行业在视频监控管理与应用上的需求也会涌现。
目前,视频大数据分析技术逐渐在政府、金融、商业等领域得到应用,甚至成为了无人机、无人驾驶汽车、VR、机器人等新兴领域的关键技术。
应用领域之一:政府部门
政府对视频智能分析的需求一方面体现在平安城市框架下安防和案件侦查对存量和更新视频数据分析的迫切需求,另一方面体现在交管领域对车牌识别、违章行为识别的分析需求。
安防和案件侦查利用视频大数据分析可以大大降低公安干警的人力投入,提高办案效率。在以往的一些案件中,比如2012年在南京发生的“1·6”抢劫案和“8.10重庆枪击抢劫案”(周克华案),警方都动用了上千的公安干警进行原始的视频数据人眼搜索,严重影响公安部门破案的进度和效率。而通过计算机自动查找、识别视频信息的优势显而易见,相关技术在该领域的应用前景非常巨大。
交管领域对视频大数据分析的需求同样迫切。例如,一线城市普遍实行了限行措施,这就需要靠计算机对车牌信息进行自动识别。在实际操作中,经常会出现强光照、大侧角、模糊等极难条件,准确识别车牌关键信息、实现各种场景下车型的精准识别都具有一定的技术挑战。
应用领域之二:金融
金融领域的应用主要体现在两点,一方面是银行监控,需要计算机主动提前识别网点的异样信息,这与政府领域的安防监控应用类似,另一方面是人脸识别在银行、证券远程开户上的应用。在远程开户时,金融机构可以通过智能终端在线上进行身份鉴权验证,使用人脸识别技术开户可以极大提升业务办理的安全性、时效性,并节省大量人力。
应用领域之三: 商业
零售门店:在零售门店里,视频大数据技术可用于客流统计、消费者心理和行为分析。通过客流统计数据,分析不同区域、通道的客流和顾客滞留时间,与销售业绩报表结合,可以分析顾客购买行为,顾客性别年龄组成。同时, 还可以对顾客进行初步面部表情分析, 初步了解客户的喜好特征,使得商家能够制定对应的营销策略。
广告营销:视频大数据分析技术可以实现广告与客户需求更加精准的匹配。 目前庞大的视频大数据资源已经吸引了国内外顶尖视频网站的涉足。通过大数据挖掘自动分析视频中的画面内容,并自动在视频中产生信息、标签、商品等内容,从而实现更精确的广告精准匹配,增加广告投放,实现将流量转换成营收的目标。同时还可以进行广告效果的监测,获得视频里面品牌曝光的次数、时长等。
互联网视频数据筛查:同样,视频大数据技术在网络黄暴盗版信息监测上也会节省大量的人力。目前在云存储平台上,视频图像数据的存储量巨大,通过人工审核黄暴等信息会是一个非常消耗时间和人力的任务。通过视频大数据技术,可以精准识别出这些平台的色情、暴恐、小广告等违规图片或视频,能帮助开发者团队降低运营风险和法律风险,节省大量审核人力。例如迅雷通过图像识别云平台,超过98%的色情视频被机器过滤,复审量低于总量2%,节省了超过98%的人力成本。
应用领域之四:机器人等新兴行业
目前,在机器人、无人驾驶汽车、无人机、VR等新兴领域,智能视频分析技术正作为重要工具得到广泛应用。随着这些领域的发展壮大,视频大数据分析的应用场景会不断丰富。
家用机器人:家用机器人需要在密布的家居中实现自动清扫等功能,则需要依赖对周围的目标检测,避开障碍物,获取行动路径,完成系列动作。在更高级的阶段,需要通过相关算法,识别家庭成员的身份、面部表情、情绪变化,以此实现自主互动和情感交流。
此外,视频大数据技术还可以应用到超市机器人上,例如超市智能跟随机器人不仅可以根据用户的年龄和性别,进行精准的商品推荐,广告推送,优惠券推送,打折信息推送,跟随功能还可以彻底解放人们的双手。
无人机:无人机和视频大数据的结合可以做为一个数据采集和数据重构平台,无人机在高空中采集丰富的图像信息(地理信息,图形信息,图片, 视频,光谱等),这个数据量非常巨大,利用视频大数据技术可以对采集的数据进行重构、 识别等。
一方面,两者的结合可以用于真实地理目标构建和地图搭建。这类复杂场景高精度三维重建技术可以用于建筑古迹修复工作、大型建筑物3D数字模型建构,甚至是电影特殊场景的呈现。
另一方面,视频分析技术可以帮助无人机确定周围世界的基本属性和大致情况,避开障碍物,避免在高速情况下同其他无人机或飞机发生碰撞。
无人驾驶汽车:在无人驾驶汽车领域,视频大数据分析技术可以帮助汽车通过视频摄像头感知和识别行驶的车道上周边的物体,辨别车道和交通信号,检测出车辆、行人、树木等运动目标, 防止事故的发生。
AR/VR:虚拟现实利用计算机技术从空间和位臵上来模拟人类视觉、听觉、触觉甚至是嗅觉的感受, 达到身临其境的效果。其中,模拟人类的视觉需要用到计算机视觉技术,两者天然就可以紧密结合。2015 年,Oculus VR收购了英国计算机视觉公司 Surreal Vision,一家主要为 AR 提供实时逼真的3D场景视觉重现的新创公司。该公司通过使用彩色及深度摄像头,利用 3D场景重建算法,提供实时逼真的周围环境视觉成像模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21