京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智慧城市大数据市场亟待挖掘
目前,全国所有的地级以上市和400多个县级市都已经开展了数字城市的建设,从数字城市到智慧城市建设,差别主要在于大数据等新技术的应用。“在智慧城市建设中,大数据服务有待进一步挖掘。”国家测绘地理信息局副局长李维森介绍,国家地理信息局正在统筹以城市地理空间信息为基础的数据库,加快智慧城市公共信息平台和应用体系建设,可以将教育、医疗、就业、旅游等数据资源向社会开放,鼓励发展以信息数据加工和创新为主的大数据挖掘等新型服务,创新大数据商业模式,未来的智慧城市必定更加“有智慧”。
日前,市场研究机构易观智库发布了《中国城市大数据市场专题分析》报告,报告称2016年我国城市大数据市场规模达132.8亿元,同比增长45.9%,到2017年有望增至189.4亿元。
报告认为,城市大数据是城市信息化的产物,是城市智慧化的主引擎之一。城市大数据有两个基本要素,一是城市数据,即数据来源于城市运转与管理的各个环节,而非政府等部门的办公业务。二是围绕与城市运营相关业务的大数据,以技术手段实现城市运营水平的升级。从广义上看,城市大数据还包括大数据在城市治理运用中所产生的新思维模式和新商业模式。
五大应用类型
城市大数据应用,不同于其他行业和领域的大数据应用模式,具有鲜明的“城市化”特征,其服务范围和内容大体包括五个方面。
一、城市人口大数据。指的是通过广泛收集与个人有关的数据,包括基本信息、地理位置信息、交易信息、行动轨迹与交通方式等,精准勾画人群的动态分布、流动轨迹等。城市热力地图涵盖人群特征、出行方式与交通工具选择特性、时间特性、区域特性等,并通过大数据分析其中的重要规律,用于指导城市建设规划与布局、交通治堵与疏导、公共资源精准布局、城市应急以及一些可能的商业应用。
二、关注环境和资源的城市大数据。这一应用重点聚焦城市人群和环境之间的关系,分析因为城市人口的大规模和高密度给环境污染带来的影响及给城市资源消耗(水、电、燃气、燃油等)带来的压力。基于城市资源承载力的大数据分析,评估城市的持续发展潜力,寻求人口和城市环境影响与资源消耗之间的平衡。
三、关注交通的城市大数据。该领域的应用与城市智慧交通有较高的重叠度,大数据应用于城市交通,有望缓解普遍存在的城市交通拥堵问题。
四、结合公共交通和城市管理的城市运行大数据。该领域的应用关注城市运行的健康度。比如公共交通出行指数、资源利用率指数、城市部件健康度指数等,从而引导城市的健康运转。
五、城市软环境大数据应用。主要涉及城市社交、娱乐、文化等层面。通过大数据分析,呈现和引导城市人群的兴趣与消费、文化娱乐等。
商业模式亟待完善
报告认为,在城市大数据生态圈的构建中,平台建设和数据运营两方面缺一不可。如果城市大数据只考虑平台建设,而没有构建良性的运营体系,那么应用层面将会出现断层。
如何构建可持续运营的城市大数据商业模式成为业界探索的重要方向。城市大数据的核心是以大数据思维进行城市运营。一方面,服务商需要采集并加工大数据,通过政府将数据面向运营企业开放,基于这些数据开发更多的创新应用,支撑政府开展经济运行、城市体征、市场决策等城市管理工作;另一方面,通过大数据运营,政府可以为居民提供主动式的互联网服务,包括医疗、养老、教育等,这将催生一个巨大的市场。
目前,城市大数据商业模式还在不断演进、成熟的过程中。城市大数据是否能够更好地促进城市运营发展,取决于其业务价值。虽然城市大数据的获取很重要,但是掌控了数据并非意味着掌控了未来的入口。因此,城市大数据要真正发挥价值,就需要有清晰的商业模式。
报告同时认为,从长期看,城市基础数据应该成为城市大数据的主流,而除了实体智能设备采集的数据外,虚拟数据也将成为城市大数据的重要一环,人工智能也将成为城市大数据的放大器。未来城市大数据将随着数字城市、人类城市、物理城市三个方面深度融合,拥有越来越深厚的内涵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22