
大数据时代的特征和思维
随着信息技术的发展和应用, 人类进入了一个大数据时代。大数据时代和我们以前的时代有什么不同? 什么又是大数据时代的特征,和应具备的思维呢? 维克多·舍恩伯格在《大数据时代》一书中将大数据时代人类的思维革命总结成三个:不是随机样本,而是所有数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。基于我个人的观察和思考, 我认为大数据时代有三大特征和需具备的思维。 它们分别是:万物皆数化特征与量化互联思维,数据价值化特征与价值思维,世界智能化特征与智慧思维。
万物皆数化特征与量化互联思维
“万物皆数”是毕达格拉斯学派2000多前的一句名言。在过去的2000多年里,人们尝试用数字来量化客观世界,并以此为基础探索并认知世界。 随着上世纪计算机的出现和随后信息化迅猛的发展, 尤其是互联网、移动互联网、物联网的深度普及和广泛应用,我们似乎真正进入了一个“万物皆数化” 的时代:从宏观到微观,从客观到主观,从具象到抽象,一切活动和动力,直接或间接,都在被全面、实时地记录,成为数字化的信息,“万物皆数化”成为大数据时代的第一个显著特征。
“要么数字化,要么死亡。”(孙正义前不久对日本企业界说) 数字信息已经成为时代发展的趋势和代表。数化特征带来的第一个思维就是量化思维,“量化”就是用一种共性的语言来描述,标识和解释世界。因此,需要充分应用最新的技术手段,对全领域、全过程的各种信息进行定量采集、定量分析挖掘、定量描述;共性的量化使得各种信息之间的互通成为可能,打通物与物之间、物与人之间、人与人之间、人与活动之间,活动与活动之间全领域、全过程的信息,协同并整合所有片段信息,形成多维的完整的数据链,这就是“互联思维”。在量化和互联的基础上,建立实用的分析方法和数据科学,才能更好实现有价值的数据应用。
数据价值化特征与价值思维
大数据时代第二个特征“数据价值化”。数据创造价值并非这几年才开始。从上世纪50年代开始的信用卡评分、到数据挖掘领域最经典的啤酒和尿布的故事,都曾经是企业利用数据创造价值的典型应用案例。在大数据时代,由于万物的量化及互联,数据已渗透到不同行业的各个维度,其多维性和完整性左右并影响了各维度的发展和决策,数据的重要性由此凸显,这就是数据的价值化特征。麦肯锡全球研究报告指出,“数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长浪潮的到来。”基于数据价值化的特征,价值思维的运营被广泛应用。同时,数据的价值在大数据时代已然超越了提升生产效率的基础定位,上升成为战略资产、生产资料以及合作资源, 甚至成为国家竞争力的构成要素。在过去几年,很多企业都提供免费服务,尤其是互联网企业,它们的商业模式正是基于数据价值的思维,数据就是价值。但是随着数据的越来越普及,获取数据的渠道日益增多,数据的价值不仅仅只体现在数据的获取上,更体现在数据的深度认知,解析和运营上。数据价值的呈现将基于更多创造性的方式。
世界智能化特征与智慧(社会)思维
基于上述的特征,人类对各种物体以及现象的认知越来越深入,(包括人类自身的需要),基于大数据的各种应用出现了智能化的特征。从智能搜索,智能推荐营销,到各种智能服务如自动导航,自动驾驶,智能家居等大量应用,将使得基于数据的智能不断进化。智慧城市的推动,也是希望利用大数据对民生、环保、公共安全、城市服务、工商业活动等各种需求做出智能响应。我们相信,各种智能机器人也将在不久的将来大量出现,在各领域服务于人类。世界智能化将是大数据时代的第三个特征。
大数据的广泛应用在产生积极影响的同时,也产生了问题,如:隐私权、数据安全,数据所有权等。基于大数据不断发展的智能机器人也给世界带来不确定性,如何处理人和机器人之间的关系将是未来一个重要的命题。这些问题和不确定性,需要个人,企业和国家对大数据的应用有很好的意愿,规则,协同,利他共赢的智慧。智慧(社会)思维,是应用大数据在更好的服务人类的过程中,必须具备的一种社会思维。
简而言之,在大数据时代,智能和智慧化是目标和愿景, 价值化是手段, 数字化是基础。 而“大数据”实际上是一种思维和方法:它是一种基于数据量化和互联,通过数据分析,挖掘,应用, 以达到整个世界高度智能化甚至智慧化的思维和方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18