
大数据时代的特征和思维
随着信息技术的发展和应用, 人类进入了一个大数据时代。大数据时代和我们以前的时代有什么不同? 什么又是大数据时代的特征,和应具备的思维呢? 维克多·舍恩伯格在《大数据时代》一书中将大数据时代人类的思维革命总结成三个:不是随机样本,而是所有数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。基于我个人的观察和思考, 我认为大数据时代有三大特征和需具备的思维。 它们分别是:万物皆数化特征与量化互联思维,数据价值化特征与价值思维,世界智能化特征与智慧思维。
万物皆数化特征与量化互联思维
“万物皆数”是毕达格拉斯学派2000多前的一句名言。在过去的2000多年里,人们尝试用数字来量化客观世界,并以此为基础探索并认知世界。 随着上世纪计算机的出现和随后信息化迅猛的发展, 尤其是互联网、移动互联网、物联网的深度普及和广泛应用,我们似乎真正进入了一个“万物皆数化” 的时代:从宏观到微观,从客观到主观,从具象到抽象,一切活动和动力,直接或间接,都在被全面、实时地记录,成为数字化的信息,“万物皆数化”成为大数据时代的第一个显著特征。
“要么数字化,要么死亡。”(孙正义前不久对日本企业界说) 数字信息已经成为时代发展的趋势和代表。数化特征带来的第一个思维就是量化思维,“量化”就是用一种共性的语言来描述,标识和解释世界。因此,需要充分应用最新的技术手段,对全领域、全过程的各种信息进行定量采集、定量分析挖掘、定量描述;共性的量化使得各种信息之间的互通成为可能,打通物与物之间、物与人之间、人与人之间、人与活动之间,活动与活动之间全领域、全过程的信息,协同并整合所有片段信息,形成多维的完整的数据链,这就是“互联思维”。在量化和互联的基础上,建立实用的分析方法和数据科学,才能更好实现有价值的数据应用。
数据价值化特征与价值思维
大数据时代第二个特征“数据价值化”。数据创造价值并非这几年才开始。从上世纪50年代开始的信用卡评分、到数据挖掘领域最经典的啤酒和尿布的故事,都曾经是企业利用数据创造价值的典型应用案例。在大数据时代,由于万物的量化及互联,数据已渗透到不同行业的各个维度,其多维性和完整性左右并影响了各维度的发展和决策,数据的重要性由此凸显,这就是数据的价值化特征。麦肯锡全球研究报告指出,“数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长浪潮的到来。”基于数据价值化的特征,价值思维的运营被广泛应用。同时,数据的价值在大数据时代已然超越了提升生产效率的基础定位,上升成为战略资产、生产资料以及合作资源, 甚至成为国家竞争力的构成要素。在过去几年,很多企业都提供免费服务,尤其是互联网企业,它们的商业模式正是基于数据价值的思维,数据就是价值。但是随着数据的越来越普及,获取数据的渠道日益增多,数据的价值不仅仅只体现在数据的获取上,更体现在数据的深度认知,解析和运营上。数据价值的呈现将基于更多创造性的方式。
世界智能化特征与智慧(社会)思维
基于上述的特征,人类对各种物体以及现象的认知越来越深入,(包括人类自身的需要),基于大数据的各种应用出现了智能化的特征。从智能搜索,智能推荐营销,到各种智能服务如自动导航,自动驾驶,智能家居等大量应用,将使得基于数据的智能不断进化。智慧城市的推动,也是希望利用大数据对民生、环保、公共安全、城市服务、工商业活动等各种需求做出智能响应。我们相信,各种智能机器人也将在不久的将来大量出现,在各领域服务于人类。世界智能化将是大数据时代的第三个特征。
大数据的广泛应用在产生积极影响的同时,也产生了问题,如:隐私权、数据安全,数据所有权等。基于大数据不断发展的智能机器人也给世界带来不确定性,如何处理人和机器人之间的关系将是未来一个重要的命题。这些问题和不确定性,需要个人,企业和国家对大数据的应用有很好的意愿,规则,协同,利他共赢的智慧。智慧(社会)思维,是应用大数据在更好的服务人类的过程中,必须具备的一种社会思维。
简而言之,在大数据时代,智能和智慧化是目标和愿景, 价值化是手段, 数字化是基础。 而“大数据”实际上是一种思维和方法:它是一种基于数据量化和互联,通过数据分析,挖掘,应用, 以达到整个世界高度智能化甚至智慧化的思维和方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15