
2017年数据分析的十大趋势解读
1.可视化
可视化会向整个信息产业链发展,不再仅仅限于数据分析了,而且新技术的出现,也将会加速发展。
2.规模车向组合发展
语文学的进步把大数据焦点从规模转向组合式发展,将实现大数据新一转的发展,而且不同来源的数据组合在一起可以重复使用,还有可能带来更加可靠的数据分析和数据价值。
3.云端储存数据的发展
以前传统的BI存储一般都是企业内部的,而且随着不断发展,数据也会越来越多,针对数据的增长,很多企业都会慢慢选对云端布置数据,尽管安全性和保密性仍是现在的困难,但是云端部置仍是方向。
4.超前分析
以前企业里的数据分析师要根据数据对市场、经济的发展进行预测,而事实上这是大部份都是线性分析,而目前正在向超前分析发展,也就是数据分析师利用数据模型、数据算法,在可视化的平台上进行分析和探索,从而完成超前分析。
5.数据与真实世界的结合
以前在数据信息化分析过程中,都是做的数据虚拟性分析,和现实世界交互很少,而pokemon go就是很好的解决了这上方面的问题,很好把数据分析与现实世界结合在一起了,从而完成对现实世界的分析而提供更多有用的事实。
6.自服务可视化商品
随着可视化的不断发展,很多企业也希望可以利用信息进行分析与探索,但是数据是分散的,不是统一通过IP系统来进行判断的,需要经过不同的部门、区域汇集到不同的企业部门。但是可视化分析工具一旦成为商品,那么企业应用可视化分析将会进一步减少很多成本。
7.新一代的BI将取代传统BI
随着可视化分析的不断发展,一旦被商业化,那么新一代的企业在利用分析时,将会更大的节省很多时间,各种平台的兼容性也将不再是问题。当新的BI取代传统BI的时候,也将会给用户带来新的灵活需求服务。
8.定制化分析应用和应用中的分析
尽管如此,但是仍有很多企业的员工暂时不能享受到这些先进的分析技术,但是可视化分析的发展,将会帮助企业管理层等需要数据分析的人更加便捷快速的了解到需要的数据和信息。
一旦这些分析技术应用到业务流程、程度应用、操作应用等具体场景中的时候,那么使用者就很方便的查找到他们想要的数据信息,而对于怎么分析挖掘这些工作就不用去考虑了。
9.生态系统化
一个企业里,每个人都有不同的价值观、想法,每个部门都有对应的数据,如果利用生态系统分析,把数据和计算、部门等有效的结合起来,就会帮助企业建立更好的分析决策。
10.多环境混合发展
以前企业部置可视化应用只在企业内部IT平台上应用,但是云计算的出现与发展,可以把外部和内部的数据进行扩展分析,像私有云、公共云等云计算服务,都可以帮助企业很好的利用这些数据分析,从而实现给用户提供更多的扩展与服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23