
数据分析助力促销的秘籍
浙江温州,浙江温州,江南皮革厂,江南皮革厂,倒闭啦!倒闭啦!好了,不用再说大家脑子里也自动带入了王八蛋老板黄鹤带着小姨子跑路的旋律。
然而事实上,即使没有吃喝嫖赌欠下3.5个亿,这么做促销,黄老板也是要带着小姨子跑路的。
因为假设宣传说的是真的,原价200-300的产品一律20元的话(90%的discount),估计只能收回企业老板的利润,以下几样一样都挣不回来:
渠道成本(一般占标价40%-60%)
生产成本(一般占标价10%-20%)
营销成本(一般占标价10%-20%)
经营成本(一般占标价10%-20%)
经销商,上下游和自己员工都欠着钱,黄老板岂有不带着小姨子跑路之理?
这个荒诞的故事,揭示了一个简单的道理:
所有的促销活动,本质上都是透支利润换销量。
想要让老板不欠工钱,小姨子不跑掉,就得有效控制促销投入,提升活动效果。实际上,促销,特别是打折促销,还在透支品牌。持续性的打折促销就像吸毒,短期见效果,越吸越上瘾,但长期吸就把品牌吸废掉了。特别是传统企业,不像互联网企业还能靠圈钱续命,每一笔促销都是在消耗自己的血汗钱。
因此,如果通过数据分析,提升促销活动ROI,就是在帮企业省钱,增效!
既然促销活动是以数量换质量,那么优化的基本思路就是:
选人:区分出不需要促销也会购买的顾客,减少投入
促单:折扣力度要能打动不想买的人购货,增加效果
在移动互联网还没那么发达的年代,企业很难一对一的与客户沟通,因此难以有差别的投放促销活动,而在今天短信,二维码,APP,服务号,都可以帮我们做到这一点。执行上的难度在下降,考验分析功力的时候到了。
如何选人?业务部门常见的战术思路是:
1. 从用户生命周期的角度出发:价格折扣投放到新顾客与沉默的老顾客身上;成长中的顾客一般做增量促销或交叉销售。
2. 从用户价值的角度出发:高价值顾客不做价格折扣,而是把资源投在提供更多增值服务上;低价值的,尚未挖掘过的顾客做价格折扣,培育用户习惯。
3. 从用户活跃行为的角度出发:在活跃高峰期不做价格折扣,做增量或者交叉;在活跃低谷做一定价格折扣,分流用户,保证高峰期服务品质。
4. 坚决打击薅羊毛:蹭促销的老炮要及早发现,限制一个就省一笔钱!
相对应的,为支持选人,定期更新一份用户画像报告(季度或半年)就是很必要的。对生命周期,价值分层,活跃行为等指标进行定期监控,可以有效帮助业务看清用户结构,思考从哪里下手。同时,也能减少每次活动都得跑一边这种数据的负担。
如何定折扣力度?业务部门常见的战术思路是:
在单个用户净利润允许的空间内,找溢价最大的礼品。比如本次促销要求用户消费1000元,这1000元净利润100,那么单个用户的促销空间就大概是10-80元,在这个成本范围内找市场价值大的礼品。不同行业差异很大,比如互联网公司促销送游戏道具,论坛金币什么的,其实没有什么实际成本,但传统企业一般都是真金白银往外砸。
这是个纯业务问题,但分析师要注意的是,用户付出的成本与折扣力度,会影响到最终促销效果。一个显而易见的矛盾是,用户都倾向于少付出,企业都倾向于降低力度。所以在促销分析,特别是事前分析时,要特别注意以下坑点:
1. 规则太复杂:业务方为了创新,搞了n复杂的活动规则,用户看都看不懂……
2. 消费要求高:业务方为了让ROI好看,提了过高的消费要求,结局吗……
3. 礼品吸引力差:不管因为什么,反正这礼品看了就没人想要……
(重点!记笔记!)总之,促销效果是做出来的,不是算出来的。如果设计本身有问题,再精妙的分析都是纸上谈兵,因此不要醉心于推演、逻辑、理论、无法自拔,忽略了消费者感受。
业务设计不是分析师的职责,但分析师可以收集过往活动效果,在业务设计有明显漏洞的时候主动提示,免得自己事后分析的时候又被逼着一遍遍找原因改报告。
看了这么多坑,分析师在促销活动分析前充分热身,有备无患:
1. 勤学习:不要把老板讲的公司战略当耳旁风,以为都是空话大话,业务部门十之八九会按大战略部署行动,所以听到老板讲话后,要主动思考什么指标与老板的讲话有关,时常观察该指标动向
2. 做笔记:你需要一个促销小档案,包含自己公司与竞品,记录以下关键字段:
活动时间,区域,名称
活动对象,参与要求,奖励力度
活动响应率,参与者人均消费,最终ROI
3. 走出去:在活动期间,至少走1次门店,问2名业务人员,聊5位用户,掌握第一手资料,更好理解数据背后的原因。问题至少要涵盖以下要点:
问店长:活动热烈否?对业务有帮助否?还想再来一次否?
问店员:活动热烈否?有什么问题没有?还想再来一次否?
问用户:规则负责否?奖励足够否?还想再来一次否?
当促销分析需求真的抵到面前时,相信通过上边的准备你已经相当的有信心与业务讨论了,还要注意一下三点:
1. 问清活动目标与考核指标。不质疑业务部门的目的,是分析师的基本职业道德,但一定要提前明确目的是什么,用什么指标考核。以防止活动效果不好的时候,业务部门异想天开,胡乱更改目标或者拿“数据不准确”之类的理由文过饰非。
2. 与业务部门过一次活动的业务逻辑。建立清晰的分析逻辑,是分析师的基本职业素质。而很多时候业务部门自己会因为目标太多,把促销规则搞得复杂无比,或者因为急于搞创新,增加了很多花里胡哨实则无用的东西进来。业务逻辑最核心的就是三点:
目标用户是谁?(涉及到后续用户画像与需求行为分析)
付出什么?(涉及到促销可带来的收入与用户参与率)
得到什么?(涉及到促销成本与用户参与率)
搞清了这三点,事前积累的素材就能用上,进行对比分析,推演本次活动情况。
3. 只对现有数据负责,提供可能的情况。如果是事前分析,就一定会涉及对未来情况的测算。数据分析师只保证自己提供的,现有数据的正确性,不要立flag赌未来,这是专业分析师与街头大仙半仙的本质区别。根据分析情况,可以提供1,2,3,4种可能,用于判断走势,最终决定让业务部门做。
抓薅羊毛是一项独立工作。看似简单,却有可能见奇效!
针对积分,优惠券,会员卡的使用情况,重点关注:
是否有少数客户大量产生和使用优惠
是否有少数门店大量产生和使用优惠
是否有特定券/活动突然出现大量领奖用户
一旦发现任一种情况,及时提交数据,用户卡号,门店编号等信息给对应业务部门,可以极大挽回公司损失。特别是在传统企业中。因为传统企业的会员卡,积分,优惠券往往出自不同部门,不同目的,缺少统一管理。实体店又经常持纵容态度,甚至店老板亲自上阵参与套惠。陈老师亲自参与的信用卡,酒店,化妆品等分析都发现过涉及金额千万以上的薅羊毛案例,及时制止,也是大功一件呢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15