
大数据型企业建设指南:大数据能给我带来什么
在以往的文章中,我们不止一次的提到过数据对企业的重要性。对现代企业来说,数据的意义不亚于第一次工业革 命后的煤炭、钢铁,或是现代工业的电力、石油甚至自动化技术。事实上,对于数据的深度挖掘和应用正是工业4.0的核心。在具体应用中,广 告自动化购买、用户画像这些基于大数据的企业级应用都已经获得了广泛的认同。
对于互联网企业来说,数据常常贯穿了整个企业的运营过程,支撑着企业的正常运转,但大多数企业的数据资产依然长年累月的堆积在服务器里,并不产生什么价值,如同被埋进地下的金子。
如何将这些埋进地里的金子挖出来、产生价值?这个问题摆在了企业面前。傅志华在三年前加入360,同时开始推动360内部的数据系统搭建的工作。傅志华长期从事数据工作,并且同时在高校兼任讲师。他认为,企业的数据系统构建的首要目标是“因地制宜”,从需求和应用场景出发,“倒推”出一个最适合自己企业的数据系统。
傅志华见证、参与了整个360的企业数据系统的建设,从数据采集的标准化、数据仓库、主机和数据统计工具的建设,再到运营分析的数据体系的指标化……目前,360大数据中心拥有五十多人的团队,利用360在运营中产生的数据进行数据采集、数据预处理、数据仓库的建设、数据统计、大数据的分析、数据挖掘、数据可视化等工作,利用企业在运转中产生的各种数据进行多个层次的应用:
业务运营监控
精细化运营
精准营 销
用户生命周期管理
市场传播
经营分析
战略分析
不同层次的应用需要不同的部门产生的数据,越高层次的应用对数据的要求就越高,也越能够对企业产生巨大的影响。
企业数据系统的构建对于企业来说最大的意义就是打破数据孤岛,使企业的数据资产“活”起来,为企业产生更多价值。傅志华认为,数据对于企业的价值体现在三点中:
首先,作为一种资源,数据的保有和利用就意味着企业拥有的“数据资产”。许多企业以数据资产为核心开发了大量产品,拥有个性化推荐能力的新闻阅读客户端和购物软件都是其中的佼佼者;
其次,对数据的深度挖掘和利用业务运营监控和精细化运营成为可能。如前文提到的利用数据进行用户生命管理、经营分析和战略分析也成为企业建立数据系统的目的之一;
最后一点,数据的利用也同时能够实实在在地增加企业的业绩和收入。无论是利用数据系统开发产品、进行营 销或是提升管理效率,都可以为企业创造更多价值和业绩。傅志华表示,在引入个性化推荐算法之后,360手机助手应用下载的转化率得到了非常显著的提升。
那么,企业建立数据系统就是势在必行的吗?傅志华认为,这个问题需要根据实际情况进行考虑。对于互联网、金融和通信等行业,由于先天就拥有大量数据,同时数据应用更加成熟,对企业业绩的增加几乎可以说是立竿见影,所以这些行业更适合主动建立一个完善的数据系统;另一些行业则需要更多成本才能发挥数据的价值,甚至需要从数据的采集开始从头做起,所以在较为传统的零售、餐饮行业大数据应用的发展稍慢。
同时,傅志华也再次强调了“因地制宜”的重要性。尤其是对于中小型企业来说,建立一个完善的数据系统需要投入大量的人力、物力,对于规模较小的企业可以说是一笔大开支了。他建议这些企业利用第三方数据工具进行数据的采集、统计和处理,根据自己的业务诉求来进行企业的数据化建设。
相比之前提到的各种问题,傅志华认为,观念的转变才是企业数据化面临的最大困难。
大数据能够给企业带来什么样的价值?我的企业适不适合大数据?我的企业哪里用得上大数据?很多企业的决策者对这些问题并不了解,缺乏“数据意识”,不习惯通过数据进行经营和决策。
观念的转变需要时间,也需要市场的培养。在大数据时代,数据的意义不亚于第一次工业革 命后的煤炭、钢铁,或是现代工业的电力、石油甚至自动化技术。企业只有跟上时代的步伐才能够在血腥的市场搏杀中生存下来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28