
让大数据项目获得成功的三条途径
大数据是营销人员喜欢的一个术语,但它开始在企业高管当中黯然失色。调研公司Gartner表示,只有11%的高管声称在大数据方面的投入很重要,或者比其他IT项目来得重要;46%的高管认为,大数据投入不大重要。
调研公司警告,太多的大数据项目上马时着眼于特定技术,而不是生产环境层面的可靠性。尽管不乏营销炒作,但是大数据仍然很重要:牢牢掌握信息可帮助企业组织获得差异化竞争优势。而CIO是帮助公司将大数据转化为业务洞察力的关键人物。
1、一开始就要搞好治理和安全
对期望投入大数据的企业来说,信息安全是个核心问题。欧盟的《一般数据保护条例》(GDPR)定于2018年5月25日开始生效,如果企业发生数据泄密事件,最高将被处以全球营业额4%的罚款。如果IT领导人期望向其他高管表明大数据的重要性,必须关注政策和程序。
Camden Council公司的临时CIO奥米德·什拉吉(Omid Shiraji)表示,其团队里面的管理人员在认真考虑GDPR对企业组织本身以及它服务的客户来说意味着什么。什拉吉表示,关键是确保GDPR充当一种支持变革的机制,而不是另建一层官僚体系。
他说:“我想尽量减小对我们行事能力的影响。管理条例常常将安全放在首位,而不是将客户放在首位。GDPR中有些原则是我们要遵循的,但是我们也得搞清楚如何让条例有利于我们的客户。CIO及其企业组织没有多少时间来搞清楚如何充分利用GDPR。”
这个观点得到了网络安全咨询公司2-sec的首席执行官兼创始人提姆·霍尔曼的认同。他表示,CIO必须专注于数据治理和GDPR,因为这很紧迫。他说:“大数据被称为大数据是有原因的――有许多数据,所以IT领导人必须小心处理。”
“业界预测存储的数据会呈指数级增长,远超出任何人能够合理使用和保护的程度。虽然大数据的统计分析有助于企业,可帮助它们搞清楚趋势、以及接下来应该怎样,但是数据的机密性、完整性和可用性受到的任何影响都会是灾难性的。”
2、让数据成为业务战略的核心
临时CIO克里斯琴·麦克马洪(Christian McMahon)是转型专业公司three25的总经理,他表示太多的公司仍忽视了自身拥有的信息所具有的力量。他说:“我始终认为,除非你拥有工具或专长来找到大数据里面的战略性或操作性知识,否则大数据毫无用处。”
麦克马洪表示,CIO们需要鼓励所在企业采取一种不同的架构和工程方法,比如使用云来覆盖更广泛的受众,并且建立按需访问的处理能力。这种需求还促使人们需要新的、不同的技能,比如数据科学。
麦克马洪说:“对CIO们来说,好消息是,那些大胆拥抱这种方法的人会重振数据战略。这么考虑让企业显得更积极主动,此外还有助于为客户开发更有用、更诱人的产品和服务。”
当然,一些IT领导人已经在数据战略方面采取积极主动的态度,全球律师事务所Clyde & Co的CIO克里斯·怀特(Chris White)就是其中之一。他所在的律师事务所正进入到这个阶段:案例管理报告自动生成。他说:“客户可能随时过来,实时查看那些报告。”
他说:“对我们来说大数据很重要,而且对我们的业务会变得越来越重要。我们需要专注于如何使用管理信息,改善我们为客户提供的信息。我们必须考虑如何最大限度地利用自己拥有的宝贵信息,以便为我们的客户增添价值。”
3、带头搞大数据项目
金融公司第一资本(Capital One)的CIO罗布·哈丁(Rob Harding)表示,他公司得益于能够访问英国足足30人的数据科学团队。这些人才华横溢,能够帮助他的公司使用大数据,打造差异化战略性优势。哈丁强有力的领导是这种成功的关键。
他说:“对我来说大数据就是我如何帮助公司里的数据科学小组竭力发挥其才能。大数据的核心不是收集庞大的信息,实际上是构建一套机制,我们的专家们可以借助这套机制,轻松分析数据,并生成可付诸行动的洞察力。”
哈丁表示,大量的企业高管仍然担心影子IT,使用大数据时更是如此。他说:“我并不担心这个――我只知道,会有人想要完成一些事情,我需要帮助他们。作为CIO,我要做的许多工作就是,我如何为我们的数据科学家提供最好的服务,帮助他们获得成功。”
哈丁表示,该公司的许多数据科学家是专家级开发人员。这些人员可以运用可能数量众多的工具。比如第一资本公司在hadoop平台上运行一个原型,用于承销和信贷风险管理。
他说:“我们通过这项工作在上市时间方面取得了一些难以置信的进步,可以迅速处理完庞大的计算工作。”这家公司始终准备积极采用新工具,目前在探究亚马逊的Redshift产品。 哈丁在帮助数据科学家团队评估这款工具的价值。
他说:“大数据的成功就是不断倾听我们数据科学团队中工作人员的心声,了解市场概况,那样我们就能最充分地利用现有技术,并且发明我们自己的一些工具。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15