
如何在SPSS中做数据正态转化
数据不完全符合正态分布,接下来的问题是,很多学科都在讲大样本不用太考虑正态分布问题,但事实上由此造成的误差确实存在,有时还会比较大。那么如何用SPSS做数据正态化转换呢?
严格说来,解决这个问题需要讲四个方面:
什么是正态转换?
为什么做正态转换?
何时做正态转化?
如何做正态转化?
我担心如果只讲How(如何做),也许有些初学者不分场合,误用滥用。但是,我同样担心如果从ABC讲起,难免过分啰嗦,甚至有藐视大家的智商之嫌。所幸现在是互联网时代,有关上述What, Why, When问题的答案网上唾手可得。如果对这些问题不甚了了的读者,强烈建议先到google上用“How to transform data to normal distribution"搜一下(或点击下面的“前10条”),前10条几乎每篇都是必读的经典。
有了上述交代,我们可以比较放心地来讨论如何做正态转换的问题了。具体来说,涉及以下几步:
第一步
查看原始变量的分布形状及其描述参数(Skewness和Kurtosis)。这可以用频率或者描述性统计或者BoxPlot;
第二步
根据变量的分布形状,决定是否做转换。这里,主要是看一下两个问题:
1、左右是否对称
也就是看Skewness(偏差度)的取值。如果Skewness为0,则是完全对称(但罕见);如果Skewness为正值,则说明该变量的分布为positively skewed(正偏态,见下图1b);如果Skewness为负值,则说明该变量的分布为negatively skewed(负偏态,见图 1a)。然而,肉眼直观检查,往往无法判断偏态的分布是否与对称的正态分布有“显著”差别,所以需要做显著性检验。如同其它统计显著性检验一样,Skewness的绝对值如大于其标准误差的1.96倍,就被认为是与正态分布有显著差别。如果检验结果显著,我们也许(注意这里我用的是“也许”一词)可以通过转换来达到或接近对称。见注解1的说明。
2、峰态是否陡缓适度
也就是看Kurtosis(峰态)是否过分peaked(陡峭)或过分flat(平坦)。如果Kurtosis为0,则说明该变量分布的峰态正合适,不胖也不瘦(但罕见);如果Kurtosis为正值,则说明该变量的分布峰态太陡峭(瘦高个,见图2b);反之,如果Kurtosis为负值,该变量的分布峰态太平缓(矮胖子,见图2a)。峰态是否适度,更难直观看出,也需要通过显著检验。如同Skewness一样,Kurtosis的绝对值如果大于其标准误差的1.96倍,就被认为与正态分布有显著差别。这时,我们也许可以通过转换来达到或接近正态分布(峰态)。
第三步
如果需要做正态化转换,还是根据变量的分布形状,确定相应的转换公式。最常见的情况是正偏态加上陡峰态。
1、如果是中度偏态
如Skewness为其标准误差的2-3倍,可以考虑取根号值来转换,以下是SPSS的指令(其中"nx"是原始变量x的转换值,参见注2):
COMPUTE nx=SQRT(x)
2、如果高度偏态
如Skewness为其标准误差的3倍以上,则可以取对数,其中又可分为自然对数和以10为基数的对数。以下是转换自然对数的指令(注2):
COMPUTE nx=LN(x)
以下是转换成以10为基数的对数(其纠偏力度最强,有时会矫枉过正,将正偏态转换成负偏态,注2):
COMPUTE nx=LG10(x)
上述公式只能减轻或消除变量的正偏态(positive skewed),但如果不分青红皂白(即不仔细操作第一和第二步)地用于负偏态(negative skewed)的变量,则会使负偏态变得更加严重。如果第一步显示了负偏态的分布,则需要先对原始变量做reflection(反向转换),即将所有的值反过来,如将最大值变成最小值、最小值变成最大值、等等。如果一个变量的取值不多,可用如下指令来反转:
RECODE x(1=7)(2=6)(3=5)(5=3)(6=2)(7=1)
如果变量的取值很多或有小数、分数,上述方法几乎不可能,则需要写如下的指令(不知大家现在是否信服了为什么要学syntax吗?):
COMPUTE nx=max-x+1, 其中max是x的最大值。
第四步
回到第一步,再次检验转换后变量的分布形状。如果没有解决问题,或者甚至恶化(如上述的从正偏态转成负偏态),需要再从第二或第三步重新做起,然后再回到第一步的检验,等等,直至达到比较令人满意的结果(见注3)。
数据正态化的特别注解
1、如同其它统计检验量一样,Skewness和Kurtosis的的标准误差也与样本量直接有关。具体说来,Skewness的标准误差约等于6除以n后的开方(根号喜下6/n),而Kurtosis的标准误差约等于24除以n后的开方(根号下24/n),其中n均为样本量。由此可见,样本量越大,标准误差越小,因此同样大小的Skewness和Kurtosis在大样本中越可能与正态分布有显著差别。这也许就是SW在问题中提到的“很多学科都在讲大样本不用太考虑正态分布问题”的由来。我的看法是,如果小样本的Skewness和Kurtosis是显著的话,一定要转换;在大样本的条件下,如果Skewness和Kurtosis是轻度偏差,也许不需要转换,但如果严重偏差,也是要转换。
2、大家知道,根号里的x不能为负数,对数或倒数里的x不能为非正数(即等于或小于0)。如果你的x中有是负数或非正数,需要将其做线性转换成非负数(即等于或大于0)或正数(大于0),如 COMPUTE nx = SQRT (x - min) 或 COMPUTE nx = LN (x - min + 1),其中的min是x的最小值(为一个非正数)。
3、不是任何分布形态的变量都可以转换的。例外之一是“双峰”或“多峰”分布(distribution with dual or multiple modality),没有任何公式可以将之转换成单峰的正态分布。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15