京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析在汽车召回制度上的应用_数据分析师
汽车召回制度(recall),是指投放市场的汽车,发现由于设计或制造方面的原因存在缺陷,不符合有关法规、标准,有可能导致安全及环保问题,厂家必须及时向国家有关部门报告该产品存在问题、造成问题的原因、改善措施等,提出召回申请,经批准后对在用车辆进行改造,以消除事故隐患。召回制度的引入,将降低汽车因产品质量问题给消费者带来的安全隐患,大大提高了产品使用的可靠性,对于维护消费者的合法权益具有重要意义。
汽车召回制度在美国、日本、加拿大、英国、澳大利亚等发达国家已经得到了普通的执行和认可,随着中国汽车市场的不断完善和成熟,我国的汽车召回制度也日趋完善, 2002年10月质检总局颁布《汽车产品召回管理规定(草案)》; 2004年10月1日开始,我国开始实施由国家质量监督检验检疫总局、国家发展和改革委员会、商务部、海关总署联合制定发布《缺陷汽车产品召回管理规定》,2014年10月10日国家质检总局又发布《缺陷汽车产品召回管理条例实施办法(征求意见稿)》,我国的汽车召回制度也经历了从无到有,从整体到局部的不断发展和完善的过程。
汽车召回制度的实施,确保用户对于产品的正常使用,为用户挽回了大量的经济损失,保障了用户生命安全。根据国家质检总局发布的最新统计数据显示,截至2014年9月30日,十年来我国已实施汽车召回793次,共1688.5万辆。而从年度召回数量数据来看,2009年,我国汽车召回数量首次突破100万辆之后,2013年这一数字更超过530万辆。 不仅如此,缺陷产品召回制度实施十年以来,单从汽车召回上来看,已经挽回直接经济损失238亿元。而在不断升级和强化的汽车召回制度建设过程中,召回主体对于召回的态度也有开始转变的趋势。企业召回的主体责任意识也正在明显加强,更多的企业认为召回是维护企业形象和加强质量管理的一项重要措施。总体来说,近十多年中国汽车召回制度的建设和发展,对保障汽车行业健康有序发展,维护消费者利益起到了重要的作用。
召回制度是保障汽车厂商不断完善其产品质量的一种机制,汽车的质量的保障是一项复杂的系统工程,从设计角度来说,在设计室设计出的完美车型投入到实际运作中,可能并不完美;从生产角度来说,汽车是一个非常复杂、工艺水平要求非常高的产品,因而可能在生产过程中存在操作失误;从使用角度来说,一些缺陷只有在使用一段时间后才暴露出来,因而召回制度对于汽车质量的保障有着重要的意义。但从汽车从设计、生产到移交客户的使用的漫长过程中,存在太多的工序和环境影响,加之汽车是由众多零部件一起组装而成的复杂系统,如何能够有效的评估各个部件的产品质量,以及对于汽车整体质量安全的影响,也是一件相当复杂的工作。
可靠性分析,旨在通过对于消费者产品使用的失效信息进行收集,从而构建产品的可靠性预测模型,实现对于产品可靠性进行整体预测,对于各种失效模式进行分析比较,从而对产品进行更好的质量改进。通过可靠性分析,可以帮助汽车企业更好的预测产品失效时间,失效机理及失效部件对于整体产品的影响,为企业的产品召回提供良好的信息支持,从被动的接受召回向主动的召回改进,更好的保障了产品质量,提升了客户服务质量,增进了企业声誉。
通过可靠性分析,可以极大的帮助汽车企业进行各项产品寿命的预测,对于产品的召回等主动预防有着重要的意义。但在使用过程中,可靠性分析对于分析人员有着较高的数理统计分析知识的要求,加上用户使用的多样性等其他外在影响因素也为可靠性分析带来了更大的难度。因此,如果能够借助使用便捷、安全准确的分析工具将对可靠性分析产生极大的帮助,将对可靠性分析起到重要的作用,而这些又对数据分析工具提出了更高的要求:
1) 准确快速的数据分析能力,准确是数据分析的根本要求,只有准确分析的结果,才能为后续的工作提供正确的参考。本文来自:CDA数据分析师培训官网
2) 快速便捷的模型构建能力,数据建模本身是一件计算量繁琐的专业工作,对于专业要求高,而大部分生产质量管理人员往往并不具备较强的专业知识背景,这就需要分析工具能够提供便捷的模型构建能力,帮助用户实现快速准确的模型构建。
3) 操作友好的交互能力,数据分析本身是一个充满无知的探索性工作,很多结果结论都是在探索的过程中被发现的,所以操作友好的交互能力,也会为我们的数据探索提供更多的便利,使得分析人员能够探索出未知的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01