京公网安备 11010802034615号
经营许可证编号:京B2-20210330
供应链使用大数据的4大趋势
近年来,大数据成为一个时髦的词语,而这有着充分的理由。使用大型数据集进行分析和规划,供应链中的相关人士可以更快地对供应链中不同点的变化做出反应。
供应链服务咨询机构JDA公司行业战略副总裁Puneet Saxena说:“根据技术进步和提供的更多信息,将让我们重新想象认为是行之有效的供应链流程。”
1.实时跟踪
Saxena表示,物联网(IoT)使供应商能够跟踪实时离开他们的货架的商品,无论是仓库还是零售店。而通过来自社交来源(例如Facebook,Twitter),新闻,事件和天气的大数据,供应商可以更好地预测和规划未来的库存,而不是依赖历史数据。例如,进行周末促销的商店可以实时跟踪销售,而不是每天一次盘点。考虑到当前销售情况,以及社交媒体对促销和潜在天气事件的反应,供应商可以快速调整其供应和仓库发货计划。
Saxena说,直到几年前,零售商可以采用ERP(企业资源计划系统)跟踪订单,库存水平和人员配置数据。这些信息每天更新,或每隔几周更新一次。但现在物联网的传感器,卫星,雷达,智能手机,社交媒体可以提供大数据,获得飞机,远洋轮船,卡车,以及包裹货物的当前位置。Saxena补充说,通过这些信息,软件系统知道哪些卡车正朝着暴风雪区域行进,并且结合天气预报数据,供应商可以调整预测并发送新的到达时间。如果一辆卡车迟到,供应商可以从另一个仓库补给或加快装运。利用更好的技术,诸如OU Kosher公司不再需要使用传真和电话跟踪发货。该公司将其原料和成品进行Kosher认证,跟踪产品行踪,如豆油从加工厂到包装或最终产品。
这可能意味着OU Kosher公司在爱荷华的工厂生产出一批大豆油,通过货车运送到新奥尔良港口的储存罐,将其转移到一条远洋货船的集装箱之后,通过卡车运到工厂,通过大豆油来生产产品中。每当大豆油移动或运输时,OUKosher公司就会知道,并添加一个新的数据集,OUKosher的高级代表Smolensky说。“它必须实时完成,以保持生产持续进行,”他说。“以前都是通过电话,传真和实物的文件才得做到这样的流程。”
2.供应商采购
维护大数据集允许企业更容易地跟踪他们的供应商,并快速做出改变。Smolensky说,OU Kosher公司监控8,500家工厂,生产80万件经过Kosher认证的产品。为了做到这一点,他们监测175万种成分。当在其监管下的一家工厂失去了Kosher认证时,OU Kosher公司就会立即提醒那些使用受影响的原料的企业,因为继续使用会使生产的产品不合格。
“我们的系统允许我们使用有问题的材料即时跟踪所有设施,我们可以与他们联系,有变化时将会提醒他们。”Smolensky说。他们还可以告知这些设施使用受影响的原料的截止日期,并从其数据库中提供可用的替代品。而其他制造商也在使用类似的数据库。
3.客户细分
通过使用客户数据,零售商可以对买家和市场进行细分,为他们提供定制的产品和服务。
Saxeny说,软件可以帮助企业将客户细分为人物角色,通过购买习惯来定制供应链,例如早期采用者或有价值的顾客。使用大数据,企业还可以根据市场调整供应链,为每个商店提供他们的买家感兴趣的特定项目。虽然这不是零售商的一个新概念,但是通过大数据,有大量的信息可用,可以更具体地解析。
Smolensky说,他的一家杂货店客户使用大数据重新设计他们的商店,使用扫描仪的UPC代码数据。看到Kosher客户的更高的结帐价值,商店意识到有一个重大的上升空间,以满足更多的社区。商店增加了额外的Kosher认证的食品通道,以及Kosher肉店,熟食店,面包店和餐馆部门。“商店开始成为Kosher认证购物者的主要目的地,所有这一切都基于对消费者数据的跟踪。”斯摩棱斯克说。
4.明智地使用大数据
虽然大数据很重要,但它不应该是整体决策者。格鲁斯特恩德科特大学管理计划和组织领导中心主任Richard Weissman说,“供应链仍然是通过工作人员实现的业务,”他说。“业务成功最终将取决于工作人员,数据不会取代工作人员。”
他说,“数据不会在半夜打电话给企业的供应商,数据不会重新补充货架,虽然数据可能为企业提供洞察力。”大数据如今有了一些炒作的成分,但它的存在是为了推动所有的供应变化的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23