
供应链使用大数据的4大趋势
近年来,大数据成为一个时髦的词语,而这有着充分的理由。使用大型数据集进行分析和规划,供应链中的相关人士可以更快地对供应链中不同点的变化做出反应。
供应链服务咨询机构JDA公司行业战略副总裁Puneet Saxena说:“根据技术进步和提供的更多信息,将让我们重新想象认为是行之有效的供应链流程。”
1.实时跟踪
Saxena表示,物联网(IoT)使供应商能够跟踪实时离开他们的货架的商品,无论是仓库还是零售店。而通过来自社交来源(例如Facebook,Twitter),新闻,事件和天气的大数据,供应商可以更好地预测和规划未来的库存,而不是依赖历史数据。例如,进行周末促销的商店可以实时跟踪销售,而不是每天一次盘点。考虑到当前销售情况,以及社交媒体对促销和潜在天气事件的反应,供应商可以快速调整其供应和仓库发货计划。
Saxena说,直到几年前,零售商可以采用ERP(企业资源计划系统)跟踪订单,库存水平和人员配置数据。这些信息每天更新,或每隔几周更新一次。但现在物联网的传感器,卫星,雷达,智能手机,社交媒体可以提供大数据,获得飞机,远洋轮船,卡车,以及包裹货物的当前位置。Saxena补充说,通过这些信息,软件系统知道哪些卡车正朝着暴风雪区域行进,并且结合天气预报数据,供应商可以调整预测并发送新的到达时间。如果一辆卡车迟到,供应商可以从另一个仓库补给或加快装运。利用更好的技术,诸如OU Kosher公司不再需要使用传真和电话跟踪发货。该公司将其原料和成品进行Kosher认证,跟踪产品行踪,如豆油从加工厂到包装或最终产品。
这可能意味着OU Kosher公司在爱荷华的工厂生产出一批大豆油,通过货车运送到新奥尔良港口的储存罐,将其转移到一条远洋货船的集装箱之后,通过卡车运到工厂,通过大豆油来生产产品中。每当大豆油移动或运输时,OUKosher公司就会知道,并添加一个新的数据集,OUKosher的高级代表Smolensky说。“它必须实时完成,以保持生产持续进行,”他说。“以前都是通过电话,传真和实物的文件才得做到这样的流程。”
2.供应商采购
维护大数据集允许企业更容易地跟踪他们的供应商,并快速做出改变。Smolensky说,OU Kosher公司监控8,500家工厂,生产80万件经过Kosher认证的产品。为了做到这一点,他们监测175万种成分。当在其监管下的一家工厂失去了Kosher认证时,OU Kosher公司就会立即提醒那些使用受影响的原料的企业,因为继续使用会使生产的产品不合格。
“我们的系统允许我们使用有问题的材料即时跟踪所有设施,我们可以与他们联系,有变化时将会提醒他们。”Smolensky说。他们还可以告知这些设施使用受影响的原料的截止日期,并从其数据库中提供可用的替代品。而其他制造商也在使用类似的数据库。
3.客户细分
通过使用客户数据,零售商可以对买家和市场进行细分,为他们提供定制的产品和服务。
Saxeny说,软件可以帮助企业将客户细分为人物角色,通过购买习惯来定制供应链,例如早期采用者或有价值的顾客。使用大数据,企业还可以根据市场调整供应链,为每个商店提供他们的买家感兴趣的特定项目。虽然这不是零售商的一个新概念,但是通过大数据,有大量的信息可用,可以更具体地解析。
Smolensky说,他的一家杂货店客户使用大数据重新设计他们的商店,使用扫描仪的UPC代码数据。看到Kosher客户的更高的结帐价值,商店意识到有一个重大的上升空间,以满足更多的社区。商店增加了额外的Kosher认证的食品通道,以及Kosher肉店,熟食店,面包店和餐馆部门。“商店开始成为Kosher认证购物者的主要目的地,所有这一切都基于对消费者数据的跟踪。”斯摩棱斯克说。
4.明智地使用大数据
虽然大数据很重要,但它不应该是整体决策者。格鲁斯特恩德科特大学管理计划和组织领导中心主任Richard Weissman说,“供应链仍然是通过工作人员实现的业务,”他说。“业务成功最终将取决于工作人员,数据不会取代工作人员。”
他说,“数据不会在半夜打电话给企业的供应商,数据不会重新补充货架,虽然数据可能为企业提供洞察力。”大数据如今有了一些炒作的成分,但它的存在是为了推动所有的供应变化的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10