
这个包最近的跟新版貌似可以直接安装了,之前的版本还需要各种配置。
installed.packages("DBI") #这个包是使用RMySQL的前提
installed.packages("RMySQL")
二、RMySQL常用函数
1、dbConnect() 建立与数据库链接的函数
drv:MySQL()
dbname:链接的数据库的名称
username:连接数据库的用户名
password:连接数据库的密码
host:如果是本地数据库可以略过,否则填写需要链接的地址
port:链接的服务器地址的端口
例子:本地数据库 :conn <- dbConnect(MySQL(),dbname = "test",username = "test",password = "123")
非本地数据库:conn <- dbConnect(MySQL(),dbname = "test",username = "test",password = "123",host = "100.0.0.0",port = 3306)
2、dbSentQurey() 修改返回的数据编码类型
有的时候建立链接后,读取的数据是乱码,那么就需要这个函数来修改
conn:就是dbConnect的变量名称
“SET NAMES utf8”or“SET NAMES gbk”或者其他的编码类型
例子:dbSentQurey(conn = conn,“SET NAMES utf8”)
3、dbGetQuery() 返回查询结果
建好链接,改好编码格式,就可以用这个函数获取需要的数据啦
conn:就是dbConnect的变量名称
statement:就是一条SQL语句
例子:dbGetQuery(conn = conn ,"select * from test")
4、dbDisconnect() 关闭链接
RMySQL一般可以建立16个链接,超过后会报错,所以每次用完之后要记得用这个函数关掉,以免跑循环的时候断掉,得不偿失。
例子:dbDisconnect(conn)
5、dbListTables() 返回数据库内所有表的名字
这个没啥说的了,你要是想看都有什么表就输入一个就好了
例子:dbListTables(conn)
6、dbWriteTable() 将R的数据写到mysql数据库的表中
conn:就是dbConnect的变量名称
name:将写入数据的表名称
value:要写入表的数据,一个数据框,或者转化成数据框
row.names:是否写入行编号
overwrite:是否覆盖写入
append:追加写入
例子:dbWriteTable(conn = conn,name = "test",value = "data",row.names = FALSE,append = TRUE)
三、参考的完整代码
library(DBI)
library(RMySQL)
library(data.table)
conn <- dbConnect(MySQL(),dbname = "xplatform",username = "xplatform",password = "xplatform")#建立连接
dbSendQuery(conn,"SET NAMES gbk") #声明编码类型
test_data <- dbGetQuery(conn,"select * from Rtest_data") #读数据
data <- data.table(NO = 1:10,NUm = 2:6) #建立一个数据框
dbWriteTable(conn,test_data,data,row.names = F,append) #将数据框data追加写入到test_data中
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04