
大数据分析要注意哪些问题
“春风十里,不如一人懂你。”用来形容大数据分析作用是最适合不过来的了,大数据的分析结果能够了到用户需要什么,帮助我们更好的推广产品,并能用来做各种研究、为公司决策提供建议等等。那么,大数据分析该注意哪些问题呢?
数据的规模一定要"大"
数据规模越大,分析结果的精确度就越高,千万亿、甚至百亿亿字节量级的数据所能分析出的结果相对精准。但如果数据不够大,很多数据挖掘和预测工作就没有办法进行。简单举例,长期跟踪一个用户在互联网上的浏览习惯和各种操作,就可以对他进行非常精准的预测,但如果仅仅只有一两次的数据这种预测就不会太精准。
"大"不仅指规模,还包括价值
数据的价值首先在于研究价值,其次在于商业价值。仅数量上的堆砌体现不出这些价值,而需要很强的关联性、结构性。关联性是指,比如淘宝如果只记录一个交易的买家、卖家、成交物品、价格等信息,商业价值就很有限。但如果记录了买卖双方的沟通和社交关系,购买前后的其他行为,那这个数据将非常有价值。结构性在于,比如一种数据记录地球上每棵大树每年长高的程度,这简单堆砌的数据价值有限。但如果数据变成记录每棵大树的位置、气候条件、树种、树龄、周边动植物生态、每年长高的高度,那么这个数据由于具有了结构性就大大增加价值。
"大数据"最终价值体现在对其分析和使用上
如何使用大数据的分析结果是关键,而不是技术。比如腾讯和阿里巴巴,都有十亿左右的用户,使用其产品进行日常沟通或者购买交易。所以他们了解用户的所有沟通习惯或交易情况。畅想下如果未来这两家公司的大数据完成了融合,就可以从不同的维度勾画出一个完整的人的行为习惯,并预测他未来的发展和动向。再进一步设想,能和人工智能结合,是不是可以有能分析和预测人类行为的机器?大数据用对了潜力无穷,用错了非常危险。这也是需要深入探讨的科学与伦理的问题。
而特别要说明的是,大部分人工作中接触的都不是真正意义上的"大数据",最多只是"大规模数据",或者连"大规模"这个量级都达不到。但实际操作中,仍然可以建议用一种"类大数据"的分析思想,来协助企业推广方面的工作。
分析哪些数据?
分析互联网数据,能看出电子商务的成交量、社交媒体上对品牌的关注转发评论等,从而衡量公关工作在社交媒体上的效果。分析媒体报道,看看都有哪些媒体在报道企业的品牌和公司,了解公众的赞扬和批评都在什么方面,帮助化解掉潜在的公关危机。分析广告投放数据与回馈,使用分析结果作为优化广告投放的依据。
怎么使用这些数据?
定期监控和分析大数据,并根据分析结果行动起来,比如:在公司微博和微信上及时回复留言,与粉丝互动;一旦发现社交媒体上有关于公司的负面新闻,第一时间与对方联系,摆正态度解决问题,将一个不满的客户转换成一个满意的客户等等。总之不要惧怕扑面而来的大数据,而是要更好的利用大数据为企业服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23