京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从“数据大”到“大数据”:银行如何蜕变
商业银行在大数据时代的蜕变,既不是传统状态下短期目标的满足,也不是金融新业态(互联网金融)压迫下的被动选择,更不是固化金融生态结构的势力扩张,其根本目的是要带来一个更加开放、更为多元、更具效率和更有秩序的金融生态体系。商业银行不是要守住垄断的市场领域或市场份额,而是用一种市场化方式、趋势化力量,优化市场空间,形成多种金融成分(混合金融、民营金融、外资金融)共同发展、错位竞争、互补高效、公平生存的新市场环境。
面对大数据时代,商业银行如何完成从“数据大”到“大数据”的蜕变,既构成其过往业务实践的重要内容,又成为其未来发展创新的主攻方向。
发端于三年前的互联网金融,依托“数字技术”,从支付结算类(以支付宝为代表)业务起步,进而涉足存款负债类(以余额宝为代表)业务,最后渗入了贷款资产类(以P2P为代表)业务,按照金融生态风险“级次”从小到大的顺序,互联网金融已经全面影响和冲击了传统金融,改变了金融业的生态。一般来讲,金融业务种类与风险程度之间,具有业务内容越复杂则风险越高的关系,而且业务内容的复杂程度与业务附加值成正比。应当承认,从过程和结果上看,互联网金融对于传统金融的强力冲击,效果是显著的。而从层级和深度上看,互联网金融越进入传统金融业务的核心领域和关键环节,其影响却越弱。
这说明,互联网金融依托实体商品消费(主要是网购、电子销售)形成的“大数据”所支撑的金融支付结算类业务,由于效率、客户分类和需求分层等因素,相比较于传统金融的商业银行,更具后发优势,并掀起了颠覆式竞争浪潮。而对于存款负债类业务和贷款资产类业务,互联网金融则少有“数据”基础支撑,缺乏资源手段支持。由于风险、行业选择和综合能力等因素,相比较于传统金融的商业银行,就表现出不协调、不平衡、不稳定和不持续的基本特征,这是互联网金融越往金融生态的深处走越艰难、甚至昙花一现的主要原因。
毋庸置疑,商业银行具有在金融生态中核心业务和关键环节的固有优势或内在优势,这是由其长期积累的庞大客户基础与体制机制性力量决定的。从短期上看,这种“基础”与“力量”仍然管用和有效,不太可能消失。不过从长期和趋势上看,则也面临紧迫和严峻的挑战。因为,互联网金融在获取并稳定金融生态低风险业务后,必定会向附加值更高的业务领域的渗透,并改变过去“试错式”、“烧钱式”和“羊毛出在猪身上式”市场竞争策略,更多采用嫁接或利用商业银行已有“数据”和客户资源的方式,实现或重构市场。因此,为应对和适应金融生态格局的急剧变化,商业银行需要来个从“数据大”到“大数据”的突破与转变。
我国商业银行长久以来积累了金融生态中几乎全部业务及环节的“数据”。遗憾的是,这些“数据”的价值,只是停留在“记载业务”的层面上,体现的是单纯的“会计”价值,形成数据资源的浪费。如何从历史记载数据中,发现未来业务发展的“机会性”与“选择性”价值,形成复合价值,叠加出“种子”价值,还未真正破题和有实质性的起步。
未来的商业银行应主动拥抱“大数据”,从数据中获得洞察力,占据价值链核心位置,引领传统模式向数字化的智慧银行转型。可持续发展的数字化智慧银行意味着银行将围绕数字技术不断优化其客户交互、产品、流程和数据,在降低客户服务成本的同时也增强更高接触程度的服务。为此,数字化智慧银行要求银行战略、业务模式和理念的深层数字化转型,也要求将与客户面对面的亲密感融合到数字交互中,从数据中提取洞察力。大数据由量变引起质变,需要创新思维模式和处理方式,能带来更强的决策能力、洞察能力、流程优化能力。大数据的内涵决定其具有推进商业银行数字化转型的特性。因此,商业银行从“数据大”到“大数据”的蜕变,是思维和行为同时转变的过程,是过程和结果力求高度统一的过程。具体讲,这是一种管理,是一种资源再生,是一种模式引领。
商业银行的全部业务,集中体现在“客户”与“风险”关系的协调上。为此,商业银行需通过“数据”的主动管理、分类管理、过滤管理、关联管理和系统管理,改变和改善发现客户、获取客户和稳定客户的新视角、新领域,完善和规范经营风险的新方式、新手段,进而从“随机性应对变化性”状态向“规律性应对趋势性”格局的转变,通过数据的激活与串联,构建融合“昨天、今天与明天”要素品质的市场发展力量,使客户发展更为精准,风险防范更加严实。
好的投资需要透过数据发现生意的本质。如果商业银行实现了从“数据大”到“大数据”的蜕变,就能让数据“活”起来,并成为一种再生资源。此中的关键是要从数据分析与管理中发现业务机会,整合发展资源,丰富发展手段。通过动态运用“数据”的绝对优势,保持在市场某一阶段、某一领域和某一业务领先的相对优势。这需要加紧探索数据管理向资源再生转化的体制机制,形成释放“大数据”优化金融生态的有效渠道,把商业银行“了解你的客户”的经营原则,以及风险防范的底线要求,通过“大数据”而具体化、市场化和有效化。
在“大数据”蜕变背景下,商业银行对金融生态的模式引领,应坚持需求主导、主业主导、本源主导的原则。商业银行的这一蜕变和模式引领,绝不是单一的技术性改造,也不是追赶互联网金融时髦的应急之举,而是紧扣金融属性的长远之策。所以,这都需要围绕服务实体经济之“本”、坚守商业银行主业之“根”,以及适应客户需求变化之“基”来推进,自觉处理好线上与线下、表内与表外、虚拟与实体业务的关系,尤其要避免因为“大数据”运用,使商业银行经营模式变革走向市场套利嗜好的歧途,以致方向迷失,行为异化。
还需要认清的是,商业银行在大数据时代的这种蜕变,既不是传统状态下短期目标的满足,也不是金融新业态(互联网金融)压迫下的被动选择,更不是固化金融生态结构的势力扩张。商业银行从“数据大”到“大数据”的蜕变,根本目的是要带来一个更加开放、更为多元、更具效率和更有秩序的金融生态体系。商业银行作为我国金融生态主体的格局,短时期内不太可能改变。商业银行的蜕变,不是要守住垄断的市场领域或市场份额,而恰恰是用一种市场化方式、趋势化力量,优化市场空间,形成多种金融成分(混合金融、民营金融、外资金融)共同发展、错位竞争、互补高效、公平生存的新市场环境,以金融新生态供给侧结构的持续优化,来适应市场需求端的多样性、变化性和复杂性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22