京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言读取Excel文件的各种方法
最近初学R语言,在R语言读入EXCEL数据格式文件的问题上遇到了困难,经过在网上搜索解决了这一问题,下面归纳几种方法,供大家分享:
第一: R中读取excel文件中的数据的路径:
假定在您的电脑有一个 excel 文件,原始的文件路径是: D:workdata1
如果直接把这个路径拷贝到R中,就会出现错误,原因是:
是escape character(转义符),\才是真正的字符,或者用/
因此,在R中有两种方法读取该路径:
1:在R中输入一下路径: D:\work\data\1 2:在R中输入一下路径: D:\work\data\1 第二: R中读取excel文件中的数据的方法 :
read.table(),read.csv(),read.delim()直接读取EXCEl文件时,都会遇到一下问题:“在读取‘.xls’的TableHeader时遇到不完全的最后一行”。解决的方法有以下几种:假如文件1.1中是一个6乘以2的矩阵,元素为:
方法1: xls另存为csv格式然后用read.csv :
具体过程如下:
> data<-read.csv("D:\work\data\1.csv") > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 > data<-read.csv("D:\work\data\1.csv",header = F) > data V1 V2 1 1 23333 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 > data<-read.csv("D:\work\data\1.csv",header = T) > data X1 X23333 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 也就是说 header = T(TURE)是默认的状态 ,在这默认状态下,输出的data矩阵是一个5乘以2的矩阵,第一行作为了data的名字,如果 header = F(FALSE), 则会现实原始的矩阵结果。
方法2: xls另存为txt格式然后用read.table : 如例子所示:
> data<-read.table("D:\work\data\1.txt",header = T) > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28
> data<-read.table("D:\work\data\1.txt",header = F) > data V1 V2 1 1 23 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 方法3:打开EXCEL,全选里面的内容,点击复制,然后在R中输入一下命令:数据分析培训
data <- read.table("clipboard", header = T, sep = 't') 结果如下所示:
> data <- read.table("clipboard", header = T, sep = 't') > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 > data <- read.table("clipboard", header = F, sep = 't') > data V1 V2 1 1 23 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 使用这种方法的时候一定要注意复制!剪切板里面没有内容是无法运行的!以上是三种方法,如果还有别的更好的,请大家补充,谢谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22