京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个数据分析师如何改变比码农还惨的人生
直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。
家人:“数据分析?分析什么东西?”
我:“哪里有数据,哪里就有我们,什么都可以分析。”
家人:“是软件工程师吗?会编程吗?”
我:“...不是,不太会。”
家人:“那是管理层吗?”
我:“还...还不到级别。”
家人:“那是商务人员?做市场或销售。”
我:“...也不是,不过我们辅助他们作决策。”
家人:“决策不都是老板说了算吗?你们到底做什么?”
我:“......来,我去给您加点水。”
除了家人朋友,很多时候,同公司内部的人也会比较困惑,数据分析师究竟是做什么的。收集数据、整理数据表、做各种报表、写ppt、做挖掘模型、打小报告
......每个人的理解都不一样。
“小陈,你能给我发一个去年一年的xx页面的访问量吗?最好是以国家,行业,公司规模作为纬度的,浏览量和UU都要。”在数据分析师眼中,这样的场景早已司空见惯。
由于我们对SQL等数据工具轻车熟路,很多部门就会直接找我们要数据,但并不会说清楚前因后果。这样不仅浪费分析师时间,也并不能解决业务人员的需求。
数据分析,被很多部门漏看了“分析”二字。
数据分析师的正确姿势应该是什么样?
互联网公司的优势在于,运营过程中产生大量数据,这些数据可以通过一些手段转化为决策的动力。
数据分析师,就是这其中的结合点。
产品,营销,销售等部门,都会有不同的需求。
例如,产品经理最关心的,是AB测试的数据,用以决定产品的效果;
营销团队,在乎营销渠道反馈与结果的数据,以便设计下一个营销战略;
销售,关心客户的购买率,保留,以及追加销售时机等。
数据可以直接为其提供服务。
而很多数据分析师现在正在做什么呢?
以写SQL做图表为生,把数据整理的干干净净整整齐齐。
但这仅仅是第一步,很多时候,商务部门人员无法直接理解表格数据。
那么数据分析师,还需要把数据通过浅显易懂的图表形式展现出来,无论是饼状图,曲线图,柱状图等等。
但这样的需求可大可小,随时都有可能产生,十分耗费精力和时间。
如果可以自动化出数据,制作走势图,就可以大大的减轻分析师的负担。
在我有限的工作经验里,数据分析团队往往是工作非常辛苦的团队,原因主要有两个。
一、数据分析人员多半是一对多的关系,一名分析人员同时需要支持很多业务团队,每个业务人员都有不同的截止日期,重要程度,这些工作都堆在分析师面前,通常需要加班完成;
二、分析人员属于幕后人员,而且没有开发的码农们那么受重视,也没有得到上级在人员或精神上的支持,于是多半是苦逼的熬着。
我们应该怎么改变这种屌丝生活呢?
首先可以对自己工作进行优先排序,并与对口业务人员沟通,减少或避免复制粘贴的工作。或是进行培训,将如何做复制粘贴的工作方法教给业务人员,所谓授人以鱼不如授人以渔。
不过这些仍然只能治标不能治本。
最直接的方式就是善于利用外部软件服务,避免脏活累活都自己干。
很多现有的服务公司,都可以为帮助客户直接产生漂亮干净的数据,进行无埋点采集。要什么有什么的数据,大大减轻分析师数据处理的时间。
我和我的同事们也是在坑里摸索多年,生成了这样一种产品。运用无埋点采集, 让数据分析师能够专注于分析结果驱动业务,而不是作各种数据清洗和埋点采集或者数据质量QA。
让工程师解放出来,让产品经理可以任性起来,随意增加维度和指标。将更多时间投入在分析数据上。
最后,我个人的经验,在数据分析师的工作中,有三点十分重要。
第一,要勇于展示自己的工作。由于是幕后,我们更要学会自我销售、自我推广,让公司内部人员了解我们的工作进度和成果,得到认可;
第二,深入业务,详细了解商务内容。只有这样,在与业务人员沟通中,才可以得心应手,知道自己努力的方向;
第三,创新,创新,再创新。无论是建立数据挖掘模型,还是规模化数据平台,数据分析人员不仅要精通自己的工作内容,还要不断思考寻求简化现有流程方式,提供新颖实用,并且切合业务需求的产品。
只有这样,我们才有出头之日。
我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21