
SPSS分析技术:协方差分析;剔除工作经验的影响以后,学历对工资的影响依然显著吗
协方差分析是方差分析方法里非常重要的一个技术,特别适用于影响因素多,因素变量类型也多的情况。方差分析主要用于分析分类变量(因素)对因变量的影响,如下图所示,因素A和因素B都是分类变量。
分析连续型变量对因变量的影响需要用相关与回归分析。如果分类变量和连续型变量混合在一起分析,则方差分析和相关回归分析都不适用了。
协方差分析在这种情况下就派上用场了。将连续性变量设为协变量,扣除它对因变量的影响后,再用方差分析方法来分析分类变量对因变量的影响情况。当然,分类变量也可以作为协变量进行分析。
协方差分析原理
方差分析中,分析者无法判断和确定的变量(自变量)被称为协变量,能够确定对因变量有影响的分类因素被称为控制变量。协方差分析需要分析的内容有:控制变量对因变量的影响,协变量对因变量的影响,以及控制变量和协变量的关系。
协方差分析的基本思路:
将难以判断和确定是否对因变量有影响的因素作为协变量,也就是协助参考因素。
通过线性回归方法消除干扰因素的影响;
进行方差分析,将因变量的变化(总方差)归结为四种方差的加和:每个控制变量的独立影响、控制变量交互作用以后的影响、协变量的影响以及随机因素的影响。协方差分析在分析因变量时,扣除协变量影响的方差后,再分析控制变量对观测变量的影响,从而实现对控制变量效果的评价。
协方差分析是一种把直线回归或多元线性回归与方差分析结合起来的方法,多个协变量间相互独立,且与控制变量之间没有交互影响。只有一个协变量时,称为一元协方差分析;当有两个或两个以上的协变量时,称为多元协方差分析。
案例分析
本年继续沿用多因素方差分析的案例,多因素方差分析结果显示:学历对工资收入有显著影响,但是没有剔除工作年限,也就是工作经验对工资的影响,这显然是不合理的。用协方差分析,将工作年限设置为协变量,观察扣除工作年限影响后,学历是否仍然对工资有显著影响。
分析步骤
1、选择菜单【分析】-【一般线性模型】-【单变量】,将工资选为因变量;将学历和性别选为自变量,也就是固定因子;选择工作年限进入协变量框;如下图所示
2、模型设置;在指定模型中选择定制;在构建项里先选择主效应,将性别、学历和工作年限选中;然后再选择交互,将性别*工作年限*学历、学历*性别选为交互考察模型。
3、选项设置;单击选项,打开单变量:选项对话框,选中OVERALL,将其选入显示平均值。在输出中选中描述统计和功效估计。单击继续。
4、其它设置保持系统默认,点击确定,输出结果。
结果解释
由上表可知,工作年限作为主效应的F值为1.595,p值为0.207,大于0.05,表明工作年限对因变量工资的影响不显著。从偏Eta平方值,即R方值来看,工作年限的R方值为0.03,也就是工作年限因素只能解释因变量变异方差的0.6%,工作年限与工资的相关度很低。两组交互作用分析:性别*学历、性别*学历*工作年限都对工资没有显著影响。
在扣除了工作年限的影响以后,学历因素的F值为28.156,p值为0.000,小于0.05,说明学历依然对工资有显著影响。与此形成鲜明对比的是性别,在多因素方差分析中,性别虽然不及学历对工资的影响力,但是依旧有显著影响,在剔除了工作年限以后,性别的F值为0.705,p值为0.402,大于0.05,说明性别对工资的没有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10