京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三要点告诉你如何降低大数据合规风险?
由于大数据众所周知,数据的数量和复杂性已大大增加,这与事务记录系统(SOR)的时代已不可同日而语。来自新数据源的这些新型数据,加上企业组织将数据变成其他信息的种种方式,给隐私、安全和妥善保管方面的合规实践带来了独特的挑战。
一位专家在《CSO》杂志上的一篇文章中写道:“大数据合规方面的挑战,加上这越来越多的一堆乱糟糟的法律、监管、标准和合同义务,让人不知所措。”这是一位主管技术交易及外包、隐私、安全和信息管理等业务的工作者。
即便没有任何个人身份信息岌岌可危,企业还是有义务要落实适当的安全措施,保护其他高度敏感的信息,比如与其商业机密、营销活动、业务合作伙伴关系等方面有关的信息。许多公司常常只关注法律、监管、标准和指引这片森林中的某一颗树或树枝,而没有认识到或者甚至没有看到其他附近的树及其关系,当然很少拉开适当的后退距离,冷静地分析一下,以便全面了解合规这片森林。
这片大数据合规森林涉及多个物种,驻留在其中的数据来自视频、照片、音频记录、机器和第三方厂商。数据分析员执行数据清理和混合,以便获得业务领导人需要的基本分析结果。在这个过程中,数据开始转换成新的数据形式。数据不断演变成新的数据形式时,全部这些活动让公司很难执行合规工作。
公司想要应对大数据合规挑战,唯一的办法就是制定一套企业框架,以应对大数据合规。这套框架要处理好诸多方面,除了数据外,还要兼顾数据驻留在其中的系统,谁可以访问这些系统,以及是否可以信赖这些数据是准确的数据。
大数据合规方面要考虑的另外问题包括:评估各种类型的大数据风险,评估知识产权的保护情况,以及向利益相关方和客户做出适当的法律透露和承诺。企业在评估这些方面、制定政策时,应该向外面的法律顾问或审计人员寻求忠告,讨教最佳实践。
向IT管理员及领导大数据项目的其他人传达的讯息就是,现在考虑大数据合规,并为此采取措施不算太早。你应该围绕大数据制定一套可灵活扩展的合规框架,确保所有利益相关方都了解它。下面是大数据和分析管理员除保护系统和数据访问安全外还应该采取的三个步骤:
1、评估大数据合规工作
大多数公司很少开始制定大数据合规计划。它们使用之前用于事务记录系统的数据保管、隐私和安全方面的IT准则,它们向利益相关方和客户发布年度隐私和安全报告。遗憾的是,这其实并没有真正考虑到大数据和大数据转换的独特性。
如果公司决定销售数据,现在没有太多的政策针对这些数据的隐私、安全和所有权。在这一系列数据转换和改头换面中,企业组织必须确定在哪些点执行合规、如何执行以及为何执行。
2、评估贵企业如何保护文档的安全
在许多情况下,孤立的业务部门有纸张记录,但是它们也一直在实行数字化,增添这些记录。其中一些信息是高度敏感的,包括患者健康记录和财务记录,可能还包括公司商业机密和专利设计。
可能已落实了标准的安全措施(包括限制进入房间、访问系统),但是如果你的大数据策略认为这种数据与其他记录系统或第三方数据结合起来很重要,该如何是好?开始越过拥有自己的合规规则的传统数据库之间的界线时,就需要重新考虑合规。
3、制定管理大数据合规的新策略
在关系数据库使用结构化数据的早期日子,很容易识别和检索敏感数据,因为数据搜索简单又直观。大数据就不是这样,大数据是完全非结构化的,也不可预测,很难搜索按照监管准则需要保护的敏感数据。这就是为何制定管理大数据合规的新策略很重要。
跟上大数据合规方面的最新进展
大数据合规涉及另外许多方面,包括专门针对大数据新涌现出来的合规措施。IT决策者及其他负责大数据的人士应该密切关注这些新方面的动向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30