京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三要点告诉你如何降低大数据合规风险?
由于大数据众所周知,数据的数量和复杂性已大大增加,这与事务记录系统(SOR)的时代已不可同日而语。来自新数据源的这些新型数据,加上企业组织将数据变成其他信息的种种方式,给隐私、安全和妥善保管方面的合规实践带来了独特的挑战。
一位专家在《CSO》杂志上的一篇文章中写道:“大数据合规方面的挑战,加上这越来越多的一堆乱糟糟的法律、监管、标准和合同义务,让人不知所措。”这是一位主管技术交易及外包、隐私、安全和信息管理等业务的工作者。
即便没有任何个人身份信息岌岌可危,企业还是有义务要落实适当的安全措施,保护其他高度敏感的信息,比如与其商业机密、营销活动、业务合作伙伴关系等方面有关的信息。许多公司常常只关注法律、监管、标准和指引这片森林中的某一颗树或树枝,而没有认识到或者甚至没有看到其他附近的树及其关系,当然很少拉开适当的后退距离,冷静地分析一下,以便全面了解合规这片森林。
这片大数据合规森林涉及多个物种,驻留在其中的数据来自视频、照片、音频记录、机器和第三方厂商。数据分析员执行数据清理和混合,以便获得业务领导人需要的基本分析结果。在这个过程中,数据开始转换成新的数据形式。数据不断演变成新的数据形式时,全部这些活动让公司很难执行合规工作。
公司想要应对大数据合规挑战,唯一的办法就是制定一套企业框架,以应对大数据合规。这套框架要处理好诸多方面,除了数据外,还要兼顾数据驻留在其中的系统,谁可以访问这些系统,以及是否可以信赖这些数据是准确的数据。
大数据合规方面要考虑的另外问题包括:评估各种类型的大数据风险,评估知识产权的保护情况,以及向利益相关方和客户做出适当的法律透露和承诺。企业在评估这些方面、制定政策时,应该向外面的法律顾问或审计人员寻求忠告,讨教最佳实践。
向IT管理员及领导大数据项目的其他人传达的讯息就是,现在考虑大数据合规,并为此采取措施不算太早。你应该围绕大数据制定一套可灵活扩展的合规框架,确保所有利益相关方都了解它。下面是大数据和分析管理员除保护系统和数据访问安全外还应该采取的三个步骤:
1、评估大数据合规工作
大多数公司很少开始制定大数据合规计划。它们使用之前用于事务记录系统的数据保管、隐私和安全方面的IT准则,它们向利益相关方和客户发布年度隐私和安全报告。遗憾的是,这其实并没有真正考虑到大数据和大数据转换的独特性。
如果公司决定销售数据,现在没有太多的政策针对这些数据的隐私、安全和所有权。在这一系列数据转换和改头换面中,企业组织必须确定在哪些点执行合规、如何执行以及为何执行。
2、评估贵企业如何保护文档的安全
在许多情况下,孤立的业务部门有纸张记录,但是它们也一直在实行数字化,增添这些记录。其中一些信息是高度敏感的,包括患者健康记录和财务记录,可能还包括公司商业机密和专利设计。
可能已落实了标准的安全措施(包括限制进入房间、访问系统),但是如果你的大数据策略认为这种数据与其他记录系统或第三方数据结合起来很重要,该如何是好?开始越过拥有自己的合规规则的传统数据库之间的界线时,就需要重新考虑合规。
3、制定管理大数据合规的新策略
在关系数据库使用结构化数据的早期日子,很容易识别和检索敏感数据,因为数据搜索简单又直观。大数据就不是这样,大数据是完全非结构化的,也不可预测,很难搜索按照监管准则需要保护的敏感数据。这就是为何制定管理大数据合规的新策略很重要。
跟上大数据合规方面的最新进展
大数据合规涉及另外许多方面,包括专门针对大数据新涌现出来的合规措施。IT决策者及其他负责大数据的人士应该密切关注这些新方面的动向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12