京公网安备 11010802034615号
经营许可证编号:京B2-20210330
过年期间提升数据分析能力的靠谱方法
“过完年我要换个好工作!”很多同学在年前都立下如此雄心壮志为了实现这个美好的目标,春节期间应该怎么度过呢?
方案一:春节期间老把戏,胡吃海塞吹牛皮;钞票不见肥肉长,2月14空叹气。
点评:这个方案确实很经典,然而同学你确定这个方案和过完年换个好工作有关系?
方案二:保存一堆大V文章回家慢慢看。
点评:同学你确定春节期间开手机不是在抢红包,而是在认真学习???
方案三:带上一本《21天精通XXX编程语言》去旅行
点评:这个场景我们见过很多次了,买一本好书,立一个大Flag,然而假期回来书只翻了目录两页,然后被垫在电脑显示器下边了……
问题出在哪里?问题出在:
1. 已经毕业很多年,却仍期待有学校般的学习环境
2. 一提到提升就先想到提升技术,而节假日恰恰最不适合提升技术
先说问题1。一提到要提升能力,人们最容易联想到场景就是
l 一个安静的教室
l 一本已经编排好的课本
l 一支笔一个笔记本
l 一杯热茶一个滴答滴答的钟表
l 一道下午4点的金色阳光透过树荫照在黑板上
想象是美好的,现实是残酷的。在步入职场以后,大家都是就事论事,具体问题具体解决,日常要用到的知识点多且零碎,很少有人会整理出成体系的万能方法,很少有整片的时间去认真学习。比如春节,加上节前节后的工作空档期,是难得的学习好时间。如果还要玩过去的话,3月份招聘旺季开始可能就错过一些机会了。
所以,要坚决的破除“万事过万年以后再说”的幻想,认真准备!
再说问题2。数据分析能力提升到底提升的是什么?
数据分析师不只要负责提取数据,更重要的是分析。要把业务问题转化为可以用数据验证的假设,要收集数据证实假设,要在证实假设以后输出结论建议,因此数据分析师的能力至少包含三大层面:
1. 梳理问题
2. 整理数据
3. 输出结论
这三大层面中,梳理问题与输出结论是业务能力。简单来说就是:你怎么理解别人说的话,你怎么讲清楚自己想说的话。而整理数据,包括数据采集,统计计算,建立模型等等,是技术能力,需要根据数据需求,选择合适的方法,生产可用的数据,支持结论。
春节期间的环境,非常不适合技术能力的提升。技术能力提升,需要了解技术原理,需要实验素材,需要亲自动手,需要多次尝试。因此需要安静的环境与平稳的心情。而春节期间人在旅途,迎来送往,亲朋相聚,觥筹交错,吹牛拍马,环境太杂太乱,时间太碎片,心情也容易被突然抢到一个大红包,隔壁老王又来秀媳妇很漂亮等等干扰。所以为了保证质量,最好不要学技术类东西。
春节期间的环境非常适合业务能力的提升。
梳理问题:本质上是理解别人说的话。春节期间社交频繁,各类型,各层次的人都可以遇到。交谈有很多并且很容易涉及工作,婚姻等情况。与其被别人show财show官show恩爱气到半死,不如认真的观察对方,结合他的谈吐,衣着,移动端使用习惯,更加深刻的了解用户。思考:
1. 他是什么样的人?代表了什么阶层?
2. 他使用我们公司的什么业务?代表了什么需求?
3. 他的使用习惯是什么样的?会表现为哪些数据?
过节下来,大量的案例印在脑中,就会大大加深自己对于业务的理解。
输出结论:本质上是讲清楚自己的话。春节期间免不了,与其坐等别人催婚催孩催工作烦到大半死,不如认真考虑如何介绍自己,清晰的讲出:
1. 我是什么样的人?
2. 我做什么工作?创造什么价值?
3. 我的特长是什么?有什么优势?
你家二姑三舅之类人物听完,并且包含致敬的:嗯,高科技人才!那就说明介绍成功,说不定还介绍个妹纸什么的;如果听完一脸恍然大悟的:哦,私人电子厂搞电脑的;呵呵,哥们你还得努力提升一下。
这两个问题重要吗?当然重要!因为这六个问题,是做分析前后最需要理解和阐述的问题。有过跳槽经历的同学更知道,这六个问题,就是面对HR时,最需要搞清楚和最需要讲清楚的问题。不了解业务背景,不思考业务情况与数据表现之间的关系,不把数字转化为结论,最终只会落得一句:你就会跑数,不懂业务的评价。
所以过年期间可以努力提升这两方面能力,吹牛也是生产力,节后整理一下项目经验,对技术能力查漏补缺。3月份无论是谋求升职还是跳槽都会很有胜算的。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27