
过年期间提升数据分析能力的靠谱方法
“过完年我要换个好工作!”很多同学在年前都立下如此雄心壮志为了实现这个美好的目标,春节期间应该怎么度过呢?
方案一:春节期间老把戏,胡吃海塞吹牛皮;钞票不见肥肉长,2月14空叹气。
点评:这个方案确实很经典,然而同学你确定这个方案和过完年换个好工作有关系?
方案二:保存一堆大V文章回家慢慢看。
点评:同学你确定春节期间开手机不是在抢红包,而是在认真学习???
方案三:带上一本《21天精通XXX编程语言》去旅行
点评:这个场景我们见过很多次了,买一本好书,立一个大Flag,然而假期回来书只翻了目录两页,然后被垫在电脑显示器下边了……
问题出在哪里?问题出在:
1. 已经毕业很多年,却仍期待有学校般的学习环境
2. 一提到提升就先想到提升技术,而节假日恰恰最不适合提升技术
先说问题1。一提到要提升能力,人们最容易联想到场景就是
l 一个安静的教室
l 一本已经编排好的课本
l 一支笔一个笔记本
l 一杯热茶一个滴答滴答的钟表
l 一道下午4点的金色阳光透过树荫照在黑板上
想象是美好的,现实是残酷的。在步入职场以后,大家都是就事论事,具体问题具体解决,日常要用到的知识点多且零碎,很少有人会整理出成体系的万能方法,很少有整片的时间去认真学习。比如春节,加上节前节后的工作空档期,是难得的学习好时间。如果还要玩过去的话,3月份招聘旺季开始可能就错过一些机会了。
所以,要坚决的破除“万事过万年以后再说”的幻想,认真准备!
再说问题2。数据分析能力提升到底提升的是什么?
数据分析师不只要负责提取数据,更重要的是分析。要把业务问题转化为可以用数据验证的假设,要收集数据证实假设,要在证实假设以后输出结论建议,因此数据分析师的能力至少包含三大层面:
1. 梳理问题
2. 整理数据
3. 输出结论
这三大层面中,梳理问题与输出结论是业务能力。简单来说就是:你怎么理解别人说的话,你怎么讲清楚自己想说的话。而整理数据,包括数据采集,统计计算,建立模型等等,是技术能力,需要根据数据需求,选择合适的方法,生产可用的数据,支持结论。
春节期间的环境,非常不适合技术能力的提升。技术能力提升,需要了解技术原理,需要实验素材,需要亲自动手,需要多次尝试。因此需要安静的环境与平稳的心情。而春节期间人在旅途,迎来送往,亲朋相聚,觥筹交错,吹牛拍马,环境太杂太乱,时间太碎片,心情也容易被突然抢到一个大红包,隔壁老王又来秀媳妇很漂亮等等干扰。所以为了保证质量,最好不要学技术类东西。
春节期间的环境非常适合业务能力的提升。
梳理问题:本质上是理解别人说的话。春节期间社交频繁,各类型,各层次的人都可以遇到。交谈有很多并且很容易涉及工作,婚姻等情况。与其被别人show财show官show恩爱气到半死,不如认真的观察对方,结合他的谈吐,衣着,移动端使用习惯,更加深刻的了解用户。思考:
1. 他是什么样的人?代表了什么阶层?
2. 他使用我们公司的什么业务?代表了什么需求?
3. 他的使用习惯是什么样的?会表现为哪些数据?
过节下来,大量的案例印在脑中,就会大大加深自己对于业务的理解。
输出结论:本质上是讲清楚自己的话。春节期间免不了,与其坐等别人催婚催孩催工作烦到大半死,不如认真考虑如何介绍自己,清晰的讲出:
1. 我是什么样的人?
2. 我做什么工作?创造什么价值?
3. 我的特长是什么?有什么优势?
你家二姑三舅之类人物听完,并且包含致敬的:嗯,高科技人才!那就说明介绍成功,说不定还介绍个妹纸什么的;如果听完一脸恍然大悟的:哦,私人电子厂搞电脑的;呵呵,哥们你还得努力提升一下。
这两个问题重要吗?当然重要!因为这六个问题,是做分析前后最需要理解和阐述的问题。有过跳槽经历的同学更知道,这六个问题,就是面对HR时,最需要搞清楚和最需要讲清楚的问题。不了解业务背景,不思考业务情况与数据表现之间的关系,不把数字转化为结论,最终只会落得一句:你就会跑数,不懂业务的评价。
所以过年期间可以努力提升这两方面能力,吹牛也是生产力,节后整理一下项目经验,对技术能力查漏补缺。3月份无论是谋求升职还是跳槽都会很有胜算的。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15