京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着信息技术和网络及各类传感设备、海量存储技术的飞速发展,数据的定义和收集方式产生了革命性的变化,大数据应运而生。相比传统分析方法,大数据技术拥有无可比拟的优势,然而大数据技术所引发的一系列关于认知论的哲学难题——大数据的假设及伦理问题——同样不容忽视。John Symon和Ramón Alvarado 2016年发表在《大数据与社会》(Big Data & Society)的论文《我们可以信任大数据吗?把科学哲学运用在计算机软件上》(Can we trust big data? Applying philosophy of science to software)表示:在很多情况下,道德与认识论问题密不可分。解铃还需系铃人,只有尽可能弄清大数据如何影响并改变了认识论,才能从根本上改善大数据技术潜在的问题。例如,通过大数据技术我们可以知道什么?这些技术的局限性在哪里?以及大数据的“新”到底体现在哪里?
有关大数据的主流文献常常表现出对科学哲学和认知论的不同看法,结论均基于一个假设:大量的数据及通过大数据分析发现的模式是独立于理论基础的。换句话说,很多大数据学者错误地认为数据量越大,分析结果就越可靠,而理论立场可有可无。这种研究大数据而不考虑当代科学哲学的做法既不明智也不可取。大数据的核心在于如何使用大数据技术来捕捉和分析数据,而大数据技术多涉及算法,我们只有充分理解各种算法的局限性和风险,明白这些算法会如何引致以及引致什么样的误差,才能决定到底多大程度可以对这些算法施以信任、加以限制。
文章首先介绍了大数据的定义并试图解释大数据的局限性,然后就以往研究对大数据的批评进行了概述,并接着论证为什么科学哲学和社会认识论与大数据技术息息相关。解决认识论担忧的最好办法是参与到计算建模与模拟的科学哲学辩论当中。基于Paul Humphreys提出的“认知模糊”,作者表示,大数据的“认知模糊”关键在于大数据技术对错误管理和错误检验的忽视,而错误问题同时也是大数据认识论的一个重要特征。要改善大数据认识论的缺陷,就必须正视误差的影响。基于这一考虑,文章就误差检验与纠正的主要特性及软件误差和路径复杂性之间的关系进行了阐述,并介绍了误差检验的常规统计方法(如Mayo的严格检验及模拟验证),以及当处理大数据的软件系统受到高度制约时这些误差检验的缺陷。最后,以谷歌流感趋势为例,文章进一步讨论了大数据技术的局限性,尤其是局限性的根源。
那么,我们可以信任大数据技术吗?文章表示,这不仅仅在于软件的开发与修正本身,而更加在于认知对软件的开发—修改—更新这个循环过程的指引作用。大数据技术是科学哲学与社会认识论争辩的产物,在运用时不应脱离科学哲学思想的指引。缺乏认知则会大大限制我们发现错误的能力。
总而言之,大数据技术作为一种工具不可避免地存在局限性。从本质上讲,这些局限性反映了大数据技术背后理论的缺失。更重要的是,这些局限性清晰地表达了大型软件系统的常规误差监测、修正与评估对内在认识论的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22