京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着信息技术和网络及各类传感设备、海量存储技术的飞速发展,数据的定义和收集方式产生了革命性的变化,大数据应运而生。相比传统分析方法,大数据技术拥有无可比拟的优势,然而大数据技术所引发的一系列关于认知论的哲学难题——大数据的假设及伦理问题——同样不容忽视。John Symon和Ramón Alvarado 2016年发表在《大数据与社会》(Big Data & Society)的论文《我们可以信任大数据吗?把科学哲学运用在计算机软件上》(Can we trust big data? Applying philosophy of science to software)表示:在很多情况下,道德与认识论问题密不可分。解铃还需系铃人,只有尽可能弄清大数据如何影响并改变了认识论,才能从根本上改善大数据技术潜在的问题。例如,通过大数据技术我们可以知道什么?这些技术的局限性在哪里?以及大数据的“新”到底体现在哪里?
有关大数据的主流文献常常表现出对科学哲学和认知论的不同看法,结论均基于一个假设:大量的数据及通过大数据分析发现的模式是独立于理论基础的。换句话说,很多大数据学者错误地认为数据量越大,分析结果就越可靠,而理论立场可有可无。这种研究大数据而不考虑当代科学哲学的做法既不明智也不可取。大数据的核心在于如何使用大数据技术来捕捉和分析数据,而大数据技术多涉及算法,我们只有充分理解各种算法的局限性和风险,明白这些算法会如何引致以及引致什么样的误差,才能决定到底多大程度可以对这些算法施以信任、加以限制。
文章首先介绍了大数据的定义并试图解释大数据的局限性,然后就以往研究对大数据的批评进行了概述,并接着论证为什么科学哲学和社会认识论与大数据技术息息相关。解决认识论担忧的最好办法是参与到计算建模与模拟的科学哲学辩论当中。基于Paul Humphreys提出的“认知模糊”,作者表示,大数据的“认知模糊”关键在于大数据技术对错误管理和错误检验的忽视,而错误问题同时也是大数据认识论的一个重要特征。要改善大数据认识论的缺陷,就必须正视误差的影响。基于这一考虑,文章就误差检验与纠正的主要特性及软件误差和路径复杂性之间的关系进行了阐述,并介绍了误差检验的常规统计方法(如Mayo的严格检验及模拟验证),以及当处理大数据的软件系统受到高度制约时这些误差检验的缺陷。最后,以谷歌流感趋势为例,文章进一步讨论了大数据技术的局限性,尤其是局限性的根源。
那么,我们可以信任大数据技术吗?文章表示,这不仅仅在于软件的开发与修正本身,而更加在于认知对软件的开发—修改—更新这个循环过程的指引作用。大数据技术是科学哲学与社会认识论争辩的产物,在运用时不应脱离科学哲学思想的指引。缺乏认知则会大大限制我们发现错误的能力。
总而言之,大数据技术作为一种工具不可避免地存在局限性。从本质上讲,这些局限性反映了大数据技术背后理论的缺失。更重要的是,这些局限性清晰地表达了大型软件系统的常规误差监测、修正与评估对内在认识论的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27