京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年大数据发展的十大趋势预测 | 2016年大数据领域成果及趋势
新的大数据技术正在进入市场,而一些旧技术的使用还在继续增长。本文涵盖大数据未来发展的十大趋势,机器学习、预测分析、物联网和边缘计算等这些趋势都可能对2017年及以后的大数据市场产生极大影响。
2016年,近40%的公司开始或正在实施和扩展大数据技术应用,另有30%的公司计划在未来12个月内采用大数据技术。2016年NewVantage Partners的大数据管理调查发现,62.5%的公司现在至少有一个大数据项目投入生产,只有5.4%的公司没有大数据应用计划,或者是没有正在进行的大数据项目。
2017将会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美元。“公司对数据可用性要求的提高,新一代技术的出现与发展,以及数据驱动决策带来的文化转变,都继续刺激着市场对大数据和分析技术服务的需求“,IDC副总裁Dan Vesset表示。
“2015年该市场全球收入为1,220亿美元,预计到2016年,这一数字将增长11.3%,并预计在2020年以11.7%的复合年增长率(CAGR)继续增长。”
虽然大数据市场将会继续增长这一点毋庸置疑,但企业应该如何应用大数据呢?目前还没有一个清楚的答案。新的大数据技术正在进入市场,而一些旧技术的使用还在继续增长。本文涵盖大数据未来发展的十大趋势,机器学习、预测分析、物联网和边缘计算等这些趋势都可能对2017年及以后的大数据市场产生极大影响。
1.开放源码
Apache 、Hadoop、Spark等开源应用程序已经在大数据领域占据了主导地位。 一项调查发现,预计到今年年底,近60%企业的Hadoop集群将投入生产。佛瑞斯特的研究显示,Hadoop的使用率正以每年32.9%的速度增长。专家表示,2017年许多企业将继续扩大他们的Hadoop和NoSQL技术应用,并寻找方法来提高处理大数据的速度。
2.内存技术
很多公司正试图加速大数据处理过程,它们采用的一项技术就是内存技术。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而现代内存技术将数据存储在RAM中,这样大大提高了数据存储的速度。佛瑞斯特研究的报告中预测,内存数据架构每年将增长29.2%。目前,有很多企业提供内存数据库技术,最著名的有SAP、IBM和Pivotal。
3.机器学习
随着大数据分析能力的不断提高,很多企业开始投资机器学习(ML)。机器学习是人工智能的一项分支,允许计算机在没有明确编码的情况下学习新事物。换句话说,就是分析大数据以得出结论。高德纳咨询公司(Gartner)称,机器学习是2017年十大战略技术趋势之一。它指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,创建出能够理解、学习、预测、适应,甚至可以自主操作的系统。
4.预测分析
预测分析与机器学习密切相关,事实上ML系统通常为预测分析软件提供动力。在早期大数据分析中,企业通过审查他们的数据来发现过去发生了什么,后来他们开始使用分析工具来调查这些事情发生的原因。预测分析则更进一步,使用大数据分析预测未来会发生什么。普华永道(PwC)2016年调查显示,目前仅为29%的公司使用预测分析技术,这个数量并不多。同时,许多供应商最近都推出了预测分析工具。随着企业越来越意识到预测分析工具的强大功能,这一数字在未来几年可能会出现激增。
5.智能app
企业使用机器学习和AI技术的另一种方式是创建智能应用程序这些应用程序采用大数据分析技术来分析用户过往的行为,为用户提供个性化的服务。推荐引擎就是一个大家非常熟悉的例子。在2017年十大战略技术趋势列表中,高德纳公司把智能应用列在了第二位。高德纳公司副总裁大卫·希尔里(David Cearley)说:“未来10年,几乎每个app,每个应用程序和服务都将一定程度上应用AI。
6.智能安保
许多企业也将大数据分析纳入安全战略。企业的安全日志数据提供了以往未遂的网络攻击信息,企业可以利用这些数据来预测并防止未来可能发生的攻击,以减少攻击造成的损失。一些公司正将其安全信息和事件管理软件(SIEM)与大数据平台(如Hadoop)结合起来。还有一些公司选择向能够提供大数据分析能力产品的公司求助。
7.物联网
物联网也可能对大数据产生相当大的影响。根据IDC 2016年9月的报告,“31.4%的受访公司推出了物联网解决方案,另有43%希望在未来12个月内部署物联网解决方案。”随着这些新设备和应用程序上线,许多公司需要新的技术和系统,才能够处理和感知来自物联网的大量数据。
8.边缘计算
边缘计算是一种可以帮助公司处理物联网大数据的新技术。 在边缘计算中,大数据分析非常接近物联网设备和传感器,而不是数据中心或云。对于企业来说,这种方式的优点显而易见。因为在网络上流动的数据较少,可以提高网络性能并节省云计算成本。它还允许公司删除过期的和无价值的物联网数据,从而降低存储和基础架构成本。边缘计算还可以加快分析过程,使决策者能够更快地洞察情况并采取行动。
9.高薪职业
对于IT工作者来说,大数据的发展意味着大数据技能人才的高需求。IDC称,“到2018年,美国将有181,000个深度分析岗位,是数据管理和数据解读相关技能岗位数量的五倍。” 由于人才缺口过大,罗伯特·哈夫技术公司预测,到2017年数据科学家的平均薪资将增长6.5%,年薪在116,000美元到163,500美元之间(当然这是美国的标准,中国国内目前尚未统计)。同样,明年大数据工程师的薪资也将增长5.8%,在135,000美元到196,000美元之间。
10.自助服务
由于聘请高级专家的成本过高,许多公司开始转向数据分析工具。 IDC先前预测,“视觉数据发现工具的增长速度将比其他商业智能(BI)市场快2.5倍,到2018年,所有企业都将投资终端用户自助服务。
一些大数据供应商已经推出了具有“自助服务”能力的大数据分析工具,专家预计这种趋势将持续到2017年及以后。数据分析过程中,信息技术的参与将越来越少,大数据分析将越来越多地融入到所有部门工作人员的工作方式之中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22