
数据分析技术热情背后的交叉因素
在“数据分析技术成为主流”(Analytics Goes Mainstream)一文中,我对目前以数据为主导的决策模式得以如此广泛应用的原因进行了解释。或许除了其应用范围外,同样令人感兴趣的还有这股数据分析技术热情背后的许多交叉因素。或许存在诸多其他因素,但我这里想介绍以下九个因素。
1. 全面质量管理(Total Quality Management,简称TQM)和六西格玛管理计划(six-sigma program)培养出一代重视严格运用数据的产品经理。六西格玛计划遭到滥用和曲解是毫无疑问的事实,但是我认为,以数据为主导的决策方式所带来的成功,极大影响了现在企业内部对高等统计式数据分析更为广泛的兴趣。
2. 数量金融学将运筹学、物理学、生物学、供应链管理学及其他领域的一些理念用于解决货币及市场问题。经过一些转变,许多数据密集型技术,比如投资组合理论,现在正从形式上的金融学科转化成日常管理的工具。
3. 正如Google公司CEO埃里克·施密特(Eric Schmidt)今年8月谈到的,现在我们两天内所产生的信息量就相当于人类自有文字记载以来至2003年的总和。显然,这个统计是以比特(bit)为计量单位的,而且Google的这一估计会由于高清视频的剧增而有所偏颇,但是这个总体观点是正确的:人们及各类组织目前产生数据的速度远超过任何人类或程序可以收集、消化或做出反应行动的速度。手机作为传感及通讯的平台作出了巨大贡献,企业应用及图像生成系统同样功不可没。现在,世界上有更多的领域以日益标准化的方式装备起各类数据仪器,其规模远超以往任何时候:Facebook的状态更新、全球定位系统(GPS)、ZigBee无线通讯技术及其他“物联网”(Internet of things)技术,以及运用于越来越多的产品上的条形码及RFID电子标签技术等等,这些只是其中的一部分。
4. 正当我们人类作为一个物种,产生以往任何时候都远远要多的数据的时候,摩尔定律(Moore's Law)及其一些推论(比如有关硬盘驱动器的克来德法则)正为我们创建起一个计算构架,使数据处理的成本效益可以比以往任何时候都高。当然,这些数据处理过程还会产生更多数据,加剧了数据过量的问题。
5. 继推行业务流程重组/企业资源计划(BPR/ERP)、互联网泡沫以及将服务导向架构作为一个业务发展主题的努力基本失败之后,供应商们目前正主推数据分析技术。数据分析技术可以用来销售服务、硬件和软件;可以用于每个垂直细分市场;适用于各种企业规模;而且与其他宏观层面的发展动向相连:智能电网(smart grids)、碳足迹、医疗成本控制、电子政务、市场营销效率、精益制造(lean manufacturing)等等。总之,许多供应商有充分的理由在其市场进入策略中重视数据分析。许多完成的投资交易增强了这个着重数据分析的承诺:SAP公司对Business Objects公司的收购是其历来规模最大的一次并购交易,而IBM、甲骨文(Oracle)、微软及Google公司都已在数据分析领域花费了数十亿美元收购相关企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17