
一份价值百万的大数据分析报告如何炼成
曾经,咨询公司一份报告就能收取企业几十万、甚至于上百万。而今,矫枉过正,数据分析报告却常常被企业认为没有任何实际价值。我经常和企业交流,他们告诉我,需要的是能够为他带来直接价值的东西,比如广告投放能够直接带来收入,所以他们舍得投入;但是因为报告不能够对企业产生任何实际的价值,所以他们不需要数据分析报告。
的确,以往的咨询报告更多是大而全,比如说曾经看到很多大型企业采购某某个定向专题的报告,如《2016年手机终端市场的发展容量和发展规模专题报告》。而这种相对宽泛的报告太宏观、没有针对性、不要说对中小企业,即使是对运营商、银行、证券这样的全球500强企业,作用也非常有限,即使企业知道某个观点,也很难落到战略实施和具体工作当中去。
我今天想说的是针对一个具体企业、一个具体问题而开展的针对性的数据分析。而这种有针对性的数据报告,以往是相对比较少见的,主要是因为数据收集的方法和数据收集的来源相对局限,主要是依靠问卷调查、电话访问、街头拦截、访问小组座谈等等;但是在大数据时代已然开启的今天,有了更多的数据来源途径和数据获取手段,
一份有效的大数据分析报告显然能够对企业产生很大的价值。
大数据分析报告不仅能够对某个具体领域的宏观经济趋势进行判断和预测;还可以把我们的触角深入到某一个社区、某一类人群、某一个具体的产品,来了解他们的真实情况;同时,我们还能够借助大数据分析的结果来制定精细化的线上广告投放策略或是做针对性的地面推广活动;而最终,我们把大数据分析的成果以大数据工具的形式固化,才能让我们的大数据效力持续。
也就是说,真正有价值的大数据分析报告能够在中宏观规划、微观/细分市场分析、方案执行和策略部署等方方面面为企业带来价值。
大数据分析报告大解剖!
很多企业不认可分析报告的价值,很大程度是不了解它的原力。今天索性告诉你整个分析思路、框架,帮助企业更好地认识、认可大数据分析报告的价值。
一、大数据报告怎么做出来的?认识大数据分析流程!
首先,我们要理解大数据分析的基本流程,一个完整的大数据分析流程包含了商业问题理解、数据理解、数据准备、数据分析、产出分析报告、提出解决方案6个环节,并且是一个闭环、不断优化的过程。对于企业,可能不需要掌握高难度的分析处理能力,但是掌握数据分析思路、数据思维和意识都是非常重要的。
二、大数据报告究竟研究了什么东西?解密大数据分析思路!
大数据报告根据功能来分,可分为4个常见类型:
市场/行业分析:对某一个行业、细分领域的市场现状的分析、发展趋势预测;
用户画像:了解用户的人群特征、某个产品的不同群体的用户行为差异;
竞品监测:对同类产品的用户使用情况、市场情况、功能性能进行对比研究;
经营分析/业务问题专题:企业经营中重大战略决策的分析或针对某具体业务问题进行专题分析,如营销效果评估等。
大数据是新生事物,所以很多人对大数据分析报告缺乏概念,所以我来对4种典型分析报告的分析思路进行一次解密,看看每一类的数据分析报告到底需要包括哪些因素(指标仅为列举,无法全面涵盖):
市场/行业分析
竞品监控
营销效果评估
三、数据来自哪里?不同数据渠道和来源的优劣势对比
数据来源分为内部和外部,内部数据是企业有意识进行埋点、收集、整合与储存所获得的数据资产(如何建立企业宽表,打好数据基础,我将在后面陆续给出干货,敬请期待)。一般来说,我们还会通过一些外部渠道获取数据:
网页爬虫数据:通过程序在网页上把相关的信息采集下来;
SDK数据:游戏等应用中SDK自动打包回传的数据,像友盟、talkingdata,主要是基于SDK数据进行整合和处理分析;
运营商数据:三大运营商运营、业务和管理三大领域大量的客户属性和上网行为数据,原力大数据平台的核心数据来源之一;
咨询公司加工数据:咨询公司大量的调研活动所产生的统计级数据;
定制数据:向数据拥有者/采集者提需求,根据你具体的条件再进行数据的采集工作;
不同数据渠道和来源的优劣势对比
一份报告的价值很大程度收数据源质量影响,因此我们需要注意是数据是否靠谱。检查数据是否靠谱最简单的方式是借助你熟悉的数据进行对比,验证数据口径和数据范围。其次,就是对数据采集的对象、过程和处理方法进行评估,看数据是否具有时效性、代表性。
四、大数据报告能够怎么用?场景应用列举
大数据能力应用的场景过去也分享过很多,在此就不累述。未来也会陆续不断地给大家分享帷策工作过程碰到的有趣的、典型的案例,有兴趣的朋友可以关注微信公众号“原力大数据”,第一时间收到大数据干货、案例、资讯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28