京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据安全“脆弱性”凸显 防护成重要课题
随着数据发掘的不断深入和在各行业应用的不断推进,大数据安全的“脆弱性”逐渐凸显,国内外数据泄露事件频发,用户隐私受到极大挑战。在数据驱动环境下,网络攻击也更多地转向存储重要敏感信息的信息化系统,大数据安全防护俨然成为大数据应用发展的一项重要课题。
大数据安全“脆弱性”凸显 防护成重要课题
虽然国内外的大数据平台厂商、大数据服务提供商和大数据内容提供商,以及传统信息安全厂商相继投入大数据安全产业,但是大数据安全产品较少,服务模式单一,大数据安全产业仍处于起步阶段。
在大数据时代,网络安全本身是一个动态调整的过程,没有一招制敌的方案。因此,在释放大数据潜能时,如何解决安全和信任问题成为了当务之急。那么,究竟该如何从国家的战略和技术的层面去防范?
首先是在思想层面引起高度重视,提高防患和信息安全意识,加大对网络安全设备和机制建设的投入。其次是在技术层面,必须加强安全技术自主知识产权研发,推动国内IT技术产业和网络安全行业的发展。再者是在法制层面,必须加强立法,并健全相关网络安全法律法规,严厉打击不法分子和黑色产业链。
除此之外,一个完整的大数据安全产业链,应该包括装备制造和服务体系,因此应从其核心硬件——芯片着手。信息安全作为国家战略问题,其硬件支撑就是核心芯片,可以说核心芯片及基础软件是构建自主可控的工业控制安全防护体系的基石。但是,目前来看,与国内市场的庞大需求相比,国产半导体芯片体量仍然较小,我国大部分芯片需要从欧美国家进口,信息安全存巨大隐患。因此芯片的国产化,是我国实现工业控制系统国产化,保障信息安全的必经之路。
而在数据保护与治理研究中心研究员洪延青看来,个人信息的收集和使用与个人的权益息息相关,数字经济能否持续健康发展,在很大程度上取决于能不能在开发和利用个人信息的同时做到趋利避害,如何实现两者的平衡是新时期个人信息保护的重要挑战之一。
众所周知,大数据时代,谁掌握数据就掌握了发展先机。人们对数据进行建模分析后,所带来的价值将会呈现出指数级增长。然而,与传统网络安全不同,大数据挖掘是对整个数据池中的所有相关的源数据进行关联分析,只要有一步错,则之后的步步皆错。
当前,我国网络空间面临的外部威胁和挑战越来越现实与紧迫,网络安全威胁呈现出“来源更加多样、手段更加复杂、对象更加广泛、后果更加严重”四大特征,传统互联网威胁向工控系统等扩散,智能技术应用安全问题日益凸现。大数据应用的新特点带来了为企业带来了新的发展机遇,但同时也带来了新的挑战。
大数据安全难题几乎已成业内共识,如何突破大数据关键技术,如何运用大数据推动经济发展、完善社会治理,如何在推动大数据发展的同时确保信息安全等等这些问题,在现在及未来长时间内都将会是世界各国和各行业普遍关注的热点问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15