京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营 | 如何“驾驭”数据分析
作为一个独立游戏开发者,在这里提出的一些观点可能早已听过无数遍。对一款游戏来说,分析是至关重要的!我们几乎要衡量每个指标!分析的关键在于快速识别游戏中存在的问题,以及应该怎样来改进它。我们所需要做的就是通过SDK库和代码来帮助我们获得胜利。
可能在大多数情况下,以上观点并没错(除了简单直白的“胜利”),不过我们的经验与分析表明,这结论似乎太草率了。难道没有让人出乎意料的事情吗?在这个过程中我们经常得出一些新颖的见解,其中一些经常会被我们遗漏,但这仍然是极具挑战性的。在这篇冗长的文章中,我将试着与大家分享关于Sharp Minds这款游戏的一些相关分析来与大家共同探讨。
1、“快餐”
对于那些没时间阅读整篇文章的朋友们,我在这里先放出一些“快餐”(觉得篇幅过长无心阅读的朋友们-可以直接跳到结论部分)
什么是分析
严格地说,“分析”是通过数据做出的有意义的见解。通常它是一个需要利用电脑完成的密集型计算过程。有时候,数据集有可能会非常巨大。计算能力的提升允许“分析”越来越多地应用在生活跟工作的各个方面。在这里,我们将专注于游戏分析,特别是手机游戏的分析。
在游戏产业中,分析通常是指记录关于玩家行为/游戏的重要数据并对其作出分析,发现在游戏中存在的各种问题及瓶颈。发现问题并通过游戏更新来纠正。而新的数据将会用于验证是否成功地解决了问题。
即使纠正问题并不是分析的一部分,我认为对游戏做出“治愈”是分析过程中一个至关重要的环节。没有它,分析几乎是浪费了开发时间。
让我们来纠正一些误解:
在游戏中进行分析意味着将一些平台的SDK集成到代码中。
NO,这只是分析过程中的一个简单步骤,仅仅是在一开始。
事件报告是琐碎的,仅在“开始阶段”、“结束阶段”以及一些类似事件发生的时候才发送
尽管可以使游戏几乎没有事件报告,然后处理所有计算中产生的数据集,有时候这会省去我们大量的时间以及简化一些工作,并且使报告更智能以及发送一些上下文数据。
比如:“开始阶段”事件可以包含关卡的尝试次数。如果没有关于玩家开始关卡的连续计算数据是很难得出结论的,有一点要很清楚,这是一种非常“奢侈”的分析统计计算。一开始在事件计算中就加入关卡尝试次数则会让这一过程简单很多。
如果我记录下每个可能在游戏中发生的事件,数据分析平台将会给我一些有价值的见解帮我改进游戏。
这可能是一种比较常见的误解。虽然数据分析平台有时会给出一些丰富而又华丽的图表像我们展示游戏中一些看起来比较明显的问题,但大多数是一些并没有什么实际意义的数据。我们很难提取一些可以帮助我们付诸实践的内容。最有挑战性的工作也正是在这里。
我并不需要现有的数据分析平台,我可以使用自己的服务器完全控制和处理这些数据。
“每件事都自食其力”通常对独立开发者来说是一个很大的问题。数据分析也不例外。数据分析的核心的确不是很复杂。只需通过一个RESTAPI或其他什么方法都系收集一些关键/有价值的数据,但是这在细节上要求的深度和广度都是超乎想象的;可行性、缩放比例、误差处理、估算、数据存储、冗余等等这些都是需要考虑在内的,而这将耗费大量的宝贵时间。
如果我得到的数据分析和图表是准确的,游戏中的瓶颈和问题将是显而易见的。
这的确是数据分析的目标。但是这需要大量的异常数据。下载数越少,数据就越不稳定。如果下载量是10次下载/天,这将是很难实现的,而且会导致一个错误的结果。想象一下如果有一个策略游戏。在策略入门的时候就已经很有特色,这将与那些墨守成规的策略游戏展现出完全不同的行为。每一个外部事件都会影响到数据。这个问题在得到稳定和相对数量级的数据或者新的有效安装方式时会相应减少。
当我解释这些例外情况的时候,剩下的分析数据将会给我一个明确的信息接下来要做什么。
并不一定。发现一个问题和知道造成这个问题的原因(因此能够想出适当的解决方案)之间还是存在一定的差距,我们不得不做出一些思考和猜测来弥补这个差距。比如,如果游戏中很多玩家在第四关的时候开始流失,很明显在这个关卡存在一个用户体验的问题。而我们仍然不知道这是什么造成的。现在如果我们去挖掘更深层次的原因,结果发现玩家们在几次尝试失败之后依然会流失。现在我们回头来看第四关的问题可能是因为难度太大或者这关的引导不能让玩家清晰的认识到该怎么做。当更深层次的挖掘不再是最优解的时候,我们只能靠猜,解决方案将基于我们最好的猜测,让我们在下一个版本里看看会发生什么。
报表数据中寻找信息是一个离散的计算过程
这不是我们应该关心的。数据分析主要是是关于统计学和或然率。我们不关心有多少玩家(或者百分比)在第四关的时候离开游戏。无论是80%还是75%-85%的信息,不要纠结于细枝末节的数字。我们要在数据分析和报告中找出来的是错误,而不是一个可能变化或者指数增长的不准确的数字结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22