
运营 | 如何“驾驭”数据分析
作为一个独立游戏开发者,在这里提出的一些观点可能早已听过无数遍。对一款游戏来说,分析是至关重要的!我们几乎要衡量每个指标!分析的关键在于快速识别游戏中存在的问题,以及应该怎样来改进它。我们所需要做的就是通过SDK库和代码来帮助我们获得胜利。
可能在大多数情况下,以上观点并没错(除了简单直白的“胜利”),不过我们的经验与分析表明,这结论似乎太草率了。难道没有让人出乎意料的事情吗?在这个过程中我们经常得出一些新颖的见解,其中一些经常会被我们遗漏,但这仍然是极具挑战性的。在这篇冗长的文章中,我将试着与大家分享关于Sharp Minds这款游戏的一些相关分析来与大家共同探讨。
1、“快餐”
对于那些没时间阅读整篇文章的朋友们,我在这里先放出一些“快餐”(觉得篇幅过长无心阅读的朋友们-可以直接跳到结论部分)
什么是分析
严格地说,“分析”是通过数据做出的有意义的见解。通常它是一个需要利用电脑完成的密集型计算过程。有时候,数据集有可能会非常巨大。计算能力的提升允许“分析”越来越多地应用在生活跟工作的各个方面。在这里,我们将专注于游戏分析,特别是手机游戏的分析。
在游戏产业中,分析通常是指记录关于玩家行为/游戏的重要数据并对其作出分析,发现在游戏中存在的各种问题及瓶颈。发现问题并通过游戏更新来纠正。而新的数据将会用于验证是否成功地解决了问题。
即使纠正问题并不是分析的一部分,我认为对游戏做出“治愈”是分析过程中一个至关重要的环节。没有它,分析几乎是浪费了开发时间。
让我们来纠正一些误解:
在游戏中进行分析意味着将一些平台的SDK集成到代码中。
NO,这只是分析过程中的一个简单步骤,仅仅是在一开始。
事件报告是琐碎的,仅在“开始阶段”、“结束阶段”以及一些类似事件发生的时候才发送
尽管可以使游戏几乎没有事件报告,然后处理所有计算中产生的数据集,有时候这会省去我们大量的时间以及简化一些工作,并且使报告更智能以及发送一些上下文数据。
比如:“开始阶段”事件可以包含关卡的尝试次数。如果没有关于玩家开始关卡的连续计算数据是很难得出结论的,有一点要很清楚,这是一种非常“奢侈”的分析统计计算。一开始在事件计算中就加入关卡尝试次数则会让这一过程简单很多。
如果我记录下每个可能在游戏中发生的事件,数据分析平台将会给我一些有价值的见解帮我改进游戏。
这可能是一种比较常见的误解。虽然数据分析平台有时会给出一些丰富而又华丽的图表像我们展示游戏中一些看起来比较明显的问题,但大多数是一些并没有什么实际意义的数据。我们很难提取一些可以帮助我们付诸实践的内容。最有挑战性的工作也正是在这里。
我并不需要现有的数据分析平台,我可以使用自己的服务器完全控制和处理这些数据。
“每件事都自食其力”通常对独立开发者来说是一个很大的问题。数据分析也不例外。数据分析的核心的确不是很复杂。只需通过一个RESTAPI或其他什么方法都系收集一些关键/有价值的数据,但是这在细节上要求的深度和广度都是超乎想象的;可行性、缩放比例、误差处理、估算、数据存储、冗余等等这些都是需要考虑在内的,而这将耗费大量的宝贵时间。
如果我得到的数据分析和图表是准确的,游戏中的瓶颈和问题将是显而易见的。
这的确是数据分析的目标。但是这需要大量的异常数据。下载数越少,数据就越不稳定。如果下载量是10次下载/天,这将是很难实现的,而且会导致一个错误的结果。想象一下如果有一个策略游戏。在策略入门的时候就已经很有特色,这将与那些墨守成规的策略游戏展现出完全不同的行为。每一个外部事件都会影响到数据。这个问题在得到稳定和相对数量级的数据或者新的有效安装方式时会相应减少。
当我解释这些例外情况的时候,剩下的分析数据将会给我一个明确的信息接下来要做什么。
并不一定。发现一个问题和知道造成这个问题的原因(因此能够想出适当的解决方案)之间还是存在一定的差距,我们不得不做出一些思考和猜测来弥补这个差距。比如,如果游戏中很多玩家在第四关的时候开始流失,很明显在这个关卡存在一个用户体验的问题。而我们仍然不知道这是什么造成的。现在如果我们去挖掘更深层次的原因,结果发现玩家们在几次尝试失败之后依然会流失。现在我们回头来看第四关的问题可能是因为难度太大或者这关的引导不能让玩家清晰的认识到该怎么做。当更深层次的挖掘不再是最优解的时候,我们只能靠猜,解决方案将基于我们最好的猜测,让我们在下一个版本里看看会发生什么。
报表数据中寻找信息是一个离散的计算过程
这不是我们应该关心的。数据分析主要是是关于统计学和或然率。我们不关心有多少玩家(或者百分比)在第四关的时候离开游戏。无论是80%还是75%-85%的信息,不要纠结于细枝末节的数字。我们要在数据分析和报告中找出来的是错误,而不是一个可能变化或者指数增长的不准确的数字结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18