
运营 | 如何“驾驭”数据分析
作为一个独立游戏开发者,在这里提出的一些观点可能早已听过无数遍。对一款游戏来说,分析是至关重要的!我们几乎要衡量每个指标!分析的关键在于快速识别游戏中存在的问题,以及应该怎样来改进它。我们所需要做的就是通过SDK库和代码来帮助我们获得胜利。
可能在大多数情况下,以上观点并没错(除了简单直白的“胜利”),不过我们的经验与分析表明,这结论似乎太草率了。难道没有让人出乎意料的事情吗?在这个过程中我们经常得出一些新颖的见解,其中一些经常会被我们遗漏,但这仍然是极具挑战性的。在这篇冗长的文章中,我将试着与大家分享关于Sharp Minds这款游戏的一些相关分析来与大家共同探讨。
1、“快餐”
对于那些没时间阅读整篇文章的朋友们,我在这里先放出一些“快餐”(觉得篇幅过长无心阅读的朋友们-可以直接跳到结论部分)
什么是分析
严格地说,“分析”是通过数据做出的有意义的见解。通常它是一个需要利用电脑完成的密集型计算过程。有时候,数据集有可能会非常巨大。计算能力的提升允许“分析”越来越多地应用在生活跟工作的各个方面。在这里,我们将专注于游戏分析,特别是手机游戏的分析。
在游戏产业中,分析通常是指记录关于玩家行为/游戏的重要数据并对其作出分析,发现在游戏中存在的各种问题及瓶颈。发现问题并通过游戏更新来纠正。而新的数据将会用于验证是否成功地解决了问题。
即使纠正问题并不是分析的一部分,我认为对游戏做出“治愈”是分析过程中一个至关重要的环节。没有它,分析几乎是浪费了开发时间。
让我们来纠正一些误解:
在游戏中进行分析意味着将一些平台的SDK集成到代码中。
NO,这只是分析过程中的一个简单步骤,仅仅是在一开始。
事件报告是琐碎的,仅在“开始阶段”、“结束阶段”以及一些类似事件发生的时候才发送
尽管可以使游戏几乎没有事件报告,然后处理所有计算中产生的数据集,有时候这会省去我们大量的时间以及简化一些工作,并且使报告更智能以及发送一些上下文数据。
比如:“开始阶段”事件可以包含关卡的尝试次数。如果没有关于玩家开始关卡的连续计算数据是很难得出结论的,有一点要很清楚,这是一种非常“奢侈”的分析统计计算。一开始在事件计算中就加入关卡尝试次数则会让这一过程简单很多。
如果我记录下每个可能在游戏中发生的事件,数据分析平台将会给我一些有价值的见解帮我改进游戏。
这可能是一种比较常见的误解。虽然数据分析平台有时会给出一些丰富而又华丽的图表像我们展示游戏中一些看起来比较明显的问题,但大多数是一些并没有什么实际意义的数据。我们很难提取一些可以帮助我们付诸实践的内容。最有挑战性的工作也正是在这里。
我并不需要现有的数据分析平台,我可以使用自己的服务器完全控制和处理这些数据。
“每件事都自食其力”通常对独立开发者来说是一个很大的问题。数据分析也不例外。数据分析的核心的确不是很复杂。只需通过一个RESTAPI或其他什么方法都系收集一些关键/有价值的数据,但是这在细节上要求的深度和广度都是超乎想象的;可行性、缩放比例、误差处理、估算、数据存储、冗余等等这些都是需要考虑在内的,而这将耗费大量的宝贵时间。
如果我得到的数据分析和图表是准确的,游戏中的瓶颈和问题将是显而易见的。
这的确是数据分析的目标。但是这需要大量的异常数据。下载数越少,数据就越不稳定。如果下载量是10次下载/天,这将是很难实现的,而且会导致一个错误的结果。想象一下如果有一个策略游戏。在策略入门的时候就已经很有特色,这将与那些墨守成规的策略游戏展现出完全不同的行为。每一个外部事件都会影响到数据。这个问题在得到稳定和相对数量级的数据或者新的有效安装方式时会相应减少。
当我解释这些例外情况的时候,剩下的分析数据将会给我一个明确的信息接下来要做什么。
并不一定。发现一个问题和知道造成这个问题的原因(因此能够想出适当的解决方案)之间还是存在一定的差距,我们不得不做出一些思考和猜测来弥补这个差距。比如,如果游戏中很多玩家在第四关的时候开始流失,很明显在这个关卡存在一个用户体验的问题。而我们仍然不知道这是什么造成的。现在如果我们去挖掘更深层次的原因,结果发现玩家们在几次尝试失败之后依然会流失。现在我们回头来看第四关的问题可能是因为难度太大或者这关的引导不能让玩家清晰的认识到该怎么做。当更深层次的挖掘不再是最优解的时候,我们只能靠猜,解决方案将基于我们最好的猜测,让我们在下一个版本里看看会发生什么。
报表数据中寻找信息是一个离散的计算过程
这不是我们应该关心的。数据分析主要是是关于统计学和或然率。我们不关心有多少玩家(或者百分比)在第四关的时候离开游戏。无论是80%还是75%-85%的信息,不要纠结于细枝末节的数字。我们要在数据分析和报告中找出来的是错误,而不是一个可能变化或者指数增长的不准确的数字结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01