京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商如何充分“掌控”数据 以大数据换未来
运营商多元化拓展需要带给其他行业新的价值,这个价值可能是更好终端、更好网络、更好平台、更好内容。但所有价值的核心是运营商如何提供更好的对策,承载这个核心的则是“数据”,运营商能否充分地掌控“数据”并对“数据”进行有效诠释,将影响运营商多元化转型未来。
运营商所能赋予的价值
一、如何充分掌控“数据”
1、掌控“数据”的背景
运营商可以称为“数据巨头”,但运营商目前的发展与“数据巨头”并不相称。运营商拥有更为核心的用户基础数据(年龄、性别、账单等),以及用户通信数据(位置、流量、语音等),这两个核心数据是一般企业无法比拟的。正是因为运营商能够掌控用户的核心数据,所以运营商存在能够掌控其他行业的数据的可能性。
缺乏其他行业数据,运营商所有核心数据的价值没有发挥余地。运营商重点将落在其他行业数据的拓展上,运营商的多元化拓展,实际是运营商对多元化数据的拓展,运营商数据版图越广阔,业务将越多元。
2、掌控“数据”的模式
运营商如何掌控各行各业的数据,运营商需要同时构建通信服务平台、以及与各行业相应的信息服务平台来支撑各行各业的服务,运营商通过通信服务平台与信息服务平台来记录消费者、商家/政府、服务商的各种各类数据。再通过平台上的人工智能、大数据分析来实现数据价值的变现。
在这个模式上,运营商并不是直接向消费者提供服务,而是由专业的服务提供商向消费者提供服务。这是否意味着运营商被边缘化或管道化,恰恰相反的是运营商掌握了产业链的核心价值——“数据”,运营商通过强大通信服务平台捆绑信息服务平台进而掌控产业链上下游的“数据”。产业链的核心并不是服务商所能提供的内容,而是运营商对数据的诠释与运用。对症下药、服务匹配才是产业链的核心价值。
NTTdocomoHealthcare推出WM平台,主要用来收集、分析、预测用户健康数据。在这平台上构建各种各类与健康相关的应用例如“健康管理”、“步行挣钱”、“作息管理”、“女性专属”、“预防接种”、“怀孕监控”、“育儿记录”等。合作商通过这个平台为消费提供专业服务与产品,例如医疗建议、保健建议、穿戴设备、测量仪等,个人消费者通过应用获得专业的服务,普通商家或广告商通过平台获得潜在营销客户。该平台将运营商、服务/产品提供商、个人消费者、普通商家/广告商四个角色有效串联起来,形成共生共赢的生态系统。
运营商掌控“数据”的核心,是搭建数据平台,专注数据的运营,通过大数据分析或人工智能,为消费者提供针对性服务、为服务商提供客户匹配与服务、产品优化建议,为商家/广告商提供客户匹配与营销策略优化建议。运营商对数据的掌控,实际是运营商通过数据支撑来实消费者、服务商、商家之间的有效沟通。
二、如何有效诠释“数据”
数据不是被制造出来,数据只是被记录而呈现,数据是对现实世界的描述。我们之所以能通过数据来诠释现实世界,是因为我们通过数据构建能解释现实世界的模型。数据仅当被记录的时候存在,诠释现实世界的模型仅被数据验证才显真实。数据不断被记录,模型不断被优化,模型才能更接近现实世界。
数据的诠释,其实是指运营商与现实世界互动的过程,更确切的是运营商对现实世界进一步理解的过程。运营商通过大数据分析,不断优化诠释现实世界的模型,找到现实世界运作的机理,发现现实世界的不足与问题,进而针对性提出相应的对策与解决方法。
数据的诠释的过程,即是运营商创造价值的过程。数据的诠释带有一定目的或方向,要么解决问题或难题,要么让事情变得更好,当然是好的目的与方向,才能带来价值。例如在制造业方面,运营商可以帮助工厂监测失败信号、产品质量控制、提升安全、提升运营等;在农业方面,运营商可以帮助农民扩大规模、提高质量、节省农动力、获取有价值信息,提供安全可靠食物等。正如NTT解决方案,所有解决方案都有初步的想法与目的,这个想法与目的则源于运营商对行业的初步理解。数据的诠释,一方需要通过大数据挖掘、人工智能来理解数据,另一方面则需要运营商通过真实世界的切实了解实际问题与情况。
价值的大小,完全取决于运营商掌控的数据量,以及对数据的诠释能力。运营商掌控数据越多、诠释数据越透彻越能给出有价值的对策。正如NTT解决方案中,运营商通过大量各类感应设备、物联网等尽可能多收集数据,累积数据,再通过大数据分析、人工智能来诠释数据,然后做出预测与行动,最终创造价值。运营商需要尽可能收集数据,以及构建强大数据分析与人工智能平台,才能成功利用数据创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01