
大数据给保险监管带来机遇与挑战
首先,大数据有助于推进监管制度现代化。监管部门可以将现有监管信息管理系统中的监管数据与股东、高管外部背景信息进行大数据关联挖掘,推进公司治理监管制度现代化。依托大数据,保险业信用信息数据库可得以建立,失信联合惩戒机制也可得以建立健全,进而推进市场行为监管制度现代化。同时大数据还可实现保险机构承保、理赔、投资等领域与偿付能力监管指标的关联分析,推进偿付能力监管制度现代化。
其次,大数据有利于推动监管手段现代化。通过开放监管信息、加大信息披露力度,可以有效发挥大数据在增强市场监督约束方面的积极作用。将保险机构经营管理全流程数据纳入非现场监管框架,建立多维大数据分析挖掘体系,为监管部门加强风险预警和防范提供大数据基础。综合运用网络舆情研判、投诉语音识别等非结构化数据分析手段,完善和优化保险公司服务评价体系,进一步促进保险消费者权益保护。
再次,大数据有利于推动监管机制现代化。在大数据背景下,各监管当局之间的信息共享成为可能,通过建立外部协作机制,可以有效防止和规避监管套利。还可依托大数据理念开发建设各类保险监管信息系统,运用大数据思维改造和优化传统监管流程,有助于改善监管资源错配的问题,形成更加合理的内部协作机制。
尽管监管部门在运用信息技术和数据资源推进监管现代化方面已取得显著的进展,但各级监管干部对数据信息的重视程度还有待加强,监管理念需要由过去的经验驱动向数据驱动升级。在大数据背景下,创新型业务监管难度更大,更容易造成风险跨行业传递,在风险防范与发展创新之间求取平衡的难度更高,对现行保险监管模式带来了新的挑战。此外,复合型保险监管人才队伍亟待加强。复合型专业人才的匮乏是制约保险监管机构运用大数据技术进行创新监管的重要因素之一。我国保险监管干部队伍建设起步较晚、基础相对薄弱,特别是与大数据运用相关的非现场监管、保险统计和信息化监管干部队伍建设与其他金融监管部门相比,还存在一定的差距。
加强监管的对策建议
笔者就运用大数据促进保险业改革创新、加强保险监管的对策有以下建议:一是完善组织实施机制。监管部门要承担引领角色,建立保险业大数据发展和应用统筹协调机制,强化行业大数据资源统筹管理。建议设立专门的推进大数据应用领导小组,推动实施一批行业大数据示范应用工程。加强保险信息共享平台建设,使其成为行业重要的公共基础设施,在此基础上实现保险业同其他相关行业开展更加广泛、深入的数据交换和信息共享。从企业层面看,鼓励保险机构设立专门大数据应用机构,密切跟踪大数据前沿技术,拓展行业大数据应用领域和方向,实现大数据资产的价值最大化。
二是建立健全监管制度。监管部门需要顺应大数据时代的发展潮流,以开放包容的心态支持保险机构运用大数据开展产品、服务和管理创新。研究制定大数据、云计算、互联网保险等相关领域监管规则,为创新留有余地。深化保险统计改革,创新统计调查信息采集方式,探索构建大数据监管模型。强化大数据标准化工作,研究制定保险大数据的采集标准、技术标准和质量标准。
三是加快推进信息共享。应推动已建和在建的保险监管信息系统实现互联互通,建立多部门网上项目并联平台,实现跨部门、跨层级行政许可审批、核准、备案的统一受理、同步审查、信息共享和透明公开。并完善车险信息共享平台,研究建立非车险业务信息共享机制,开展保单登记、农险、健康险等行业信息共享平台建设。汇集以客户为逻辑核心的保单级大数据信息,在全行业层面拓展大数据深度应用领域,建立保险业信用信息系统,发挥大数据在信用评价和失信惩戒方面的基础作用,大力推动保险业与银行、征信、公安、交通、医疗、气象等行业外相关机构实现数据共享。
四是重视数据信息安全。应完善IT治理机制,研究制定大数据条件下的保险业信息系统安全规则和数据安全规则,实现大数据资源采集、传输、存储、利用、开放等全流程的规范管理,健全与大数据时代相适应的信息安全保障体系。高度重视大数据时代保险消费者个人隐私保护问题,加强对大数据滥用、侵犯个人隐私等行为的管理和惩戒。监管部门数据开放要坚持风险可控、循序渐进原则,研究建立监管数据安全保障体系,确保监管数据信息安全。
五是加强专业人才培养。要鼓励保险机构与高校及科研机构采取跨机构、跨院系联合培养方式,大力培养兼具经济管理、金融保险、精算统计和数据科学、数据工程复合背景的保险大数据专业人才。还要支持保险机构与互联网等其他机构开展大数据应用深度合作,加大行业外大数据人才引进和培养力度,完善大数据监管人才培养及职业发展机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18