
大数据给保险监管带来机遇与挑战
首先,大数据有助于推进监管制度现代化。监管部门可以将现有监管信息管理系统中的监管数据与股东、高管外部背景信息进行大数据关联挖掘,推进公司治理监管制度现代化。依托大数据,保险业信用信息数据库可得以建立,失信联合惩戒机制也可得以建立健全,进而推进市场行为监管制度现代化。同时大数据还可实现保险机构承保、理赔、投资等领域与偿付能力监管指标的关联分析,推进偿付能力监管制度现代化。
其次,大数据有利于推动监管手段现代化。通过开放监管信息、加大信息披露力度,可以有效发挥大数据在增强市场监督约束方面的积极作用。将保险机构经营管理全流程数据纳入非现场监管框架,建立多维大数据分析挖掘体系,为监管部门加强风险预警和防范提供大数据基础。综合运用网络舆情研判、投诉语音识别等非结构化数据分析手段,完善和优化保险公司服务评价体系,进一步促进保险消费者权益保护。
再次,大数据有利于推动监管机制现代化。在大数据背景下,各监管当局之间的信息共享成为可能,通过建立外部协作机制,可以有效防止和规避监管套利。还可依托大数据理念开发建设各类保险监管信息系统,运用大数据思维改造和优化传统监管流程,有助于改善监管资源错配的问题,形成更加合理的内部协作机制。
尽管监管部门在运用信息技术和数据资源推进监管现代化方面已取得显著的进展,但各级监管干部对数据信息的重视程度还有待加强,监管理念需要由过去的经验驱动向数据驱动升级。在大数据背景下,创新型业务监管难度更大,更容易造成风险跨行业传递,在风险防范与发展创新之间求取平衡的难度更高,对现行保险监管模式带来了新的挑战。此外,复合型保险监管人才队伍亟待加强。复合型专业人才的匮乏是制约保险监管机构运用大数据技术进行创新监管的重要因素之一。我国保险监管干部队伍建设起步较晚、基础相对薄弱,特别是与大数据运用相关的非现场监管、保险统计和信息化监管干部队伍建设与其他金融监管部门相比,还存在一定的差距。
加强监管的对策建议
笔者就运用大数据促进保险业改革创新、加强保险监管的对策有以下建议:一是完善组织实施机制。监管部门要承担引领角色,建立保险业大数据发展和应用统筹协调机制,强化行业大数据资源统筹管理。建议设立专门的推进大数据应用领导小组,推动实施一批行业大数据示范应用工程。加强保险信息共享平台建设,使其成为行业重要的公共基础设施,在此基础上实现保险业同其他相关行业开展更加广泛、深入的数据交换和信息共享。从企业层面看,鼓励保险机构设立专门大数据应用机构,密切跟踪大数据前沿技术,拓展行业大数据应用领域和方向,实现大数据资产的价值最大化。
二是建立健全监管制度。监管部门需要顺应大数据时代的发展潮流,以开放包容的心态支持保险机构运用大数据开展产品、服务和管理创新。研究制定大数据、云计算、互联网保险等相关领域监管规则,为创新留有余地。深化保险统计改革,创新统计调查信息采集方式,探索构建大数据监管模型。强化大数据标准化工作,研究制定保险大数据的采集标准、技术标准和质量标准。
三是加快推进信息共享。应推动已建和在建的保险监管信息系统实现互联互通,建立多部门网上项目并联平台,实现跨部门、跨层级行政许可审批、核准、备案的统一受理、同步审查、信息共享和透明公开。并完善车险信息共享平台,研究建立非车险业务信息共享机制,开展保单登记、农险、健康险等行业信息共享平台建设。汇集以客户为逻辑核心的保单级大数据信息,在全行业层面拓展大数据深度应用领域,建立保险业信用信息系统,发挥大数据在信用评价和失信惩戒方面的基础作用,大力推动保险业与银行、征信、公安、交通、医疗、气象等行业外相关机构实现数据共享。
四是重视数据信息安全。应完善IT治理机制,研究制定大数据条件下的保险业信息系统安全规则和数据安全规则,实现大数据资源采集、传输、存储、利用、开放等全流程的规范管理,健全与大数据时代相适应的信息安全保障体系。高度重视大数据时代保险消费者个人隐私保护问题,加强对大数据滥用、侵犯个人隐私等行为的管理和惩戒。监管部门数据开放要坚持风险可控、循序渐进原则,研究建立监管数据安全保障体系,确保监管数据信息安全。
五是加强专业人才培养。要鼓励保险机构与高校及科研机构采取跨机构、跨院系联合培养方式,大力培养兼具经济管理、金融保险、精算统计和数据科学、数据工程复合背景的保险大数据专业人才。还要支持保险机构与互联网等其他机构开展大数据应用深度合作,加大行业外大数据人才引进和培养力度,完善大数据监管人才培养及职业发展机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29