
大数据推动高等教育变革
随着互联网和物联网的快速发展和广泛应用,世界处于各种数据指数式增长的环境中,进入大数据时代。大数据日益成为推动各个领域变革的强劲力量。从高等教育领域来看,大数据在教学、科研和管理方面引发的创新与变革日益显现。
在教学方面,大规模、开放式在线教育课程——慕课,正在成为席卷全球的高等教育新潮流。慕课教育技术被认为是继印刷术之后教育领域最重大的变革,其带来的学习变化体现在四个方面:第一,慕课对学生免费,或者只对需要课程认证者收取少许费用,极大地降低了教育成本;第二,慕课打破了传统课堂教育的时空限制,无论何时何地,想学就学;第三,慕课有助于解决教育资源分布不平衡问题,有了慕课,偏僻山区的孩子也能通过电脑网络学习一流学校的课程;第四,慕课背后的大数据平台能够对学习者进行行为评价和诱导,根据学生的学习行为特征,比如通过答卷中的错误分布分析学生的知识漏洞,动态调整学习内容和节奏,量身打造高质量的学习模式。总的来看,慕课创造了个性化、智能化教学模式,降低了教育成本,同时也为解决区域之间乃至世界范围的教育资源不均衡问题找到了一条途径。
在学术研究方面,大数据正在开创新的科研范式。一般认为,科学思维分为实验思维、理论思维和计算思维三种类型。传统的科学研究范式大多以理论思维和实验思维为主,而计算仅仅作为理论猜想的辅助论证手段。随着大数据技术的发展和广泛运用,计算思维的重要性日益凸显。在一些学科领域和科研方法中,由大数据技术支撑的海量数据运算,成为整个研究过程的主导性、决定性因素。1852年提出的四色猜想曾困扰数学界100多年,终于在1976年由美国数学家通过计算机运算得到证明。这一证明过程耗时1200个小时,涉及逻辑判断超过百亿。对于人脑来说,这是一道无法逾越的能力鸿沟。2009年,谷歌公司的工程师们在《自然》杂志上发表论文,准确预测出甲型H1N1流感的暴发。这篇论文没有采用流行病学理论,而是直接对特定词语与流感传播的相关性进行数学建模,利用大数据技术计算出结论。类似的数据密集型和计算驱动型科研模式,将对高校科研活动和评价机制提出新要求。在可预见的将来,海量数据平台和跨学科、跨领域、跨国界、跨地域的科研协作网络,将成为高校科学研究的基础设施和手段。
在管理方面,大数据全方位提升校园管理。例如,通过对饭卡刷卡数据的监控,可以实现对贫困学生的兜底式资助;通过采集和比对学生进出寝室、夜间用电的时间等数据,可以将最适合的人安排在同一个宿舍;通过对图书馆和自习室座位信息的动态推送,可以解决“占座”问题;通过对选课系统的数据分析,可以在瞬间评出最受欢迎的课程和老师。当各方面管理数据的丰富度和系统化水平达到一定程度后,海量数据之间的相互关联将生成以即时分析和动态预测为基本功能的智能化校园管理系统,为学生自我管理提供便利,帮助学校破解一些管理上的难题。比如,利用标签化技术,可以对学生的情绪进行动态采集和量化监控。发现严重的负面情绪累积和社交异常时,校园管理部门可以及时启动心理咨询和行为干预。当然,智能化校园管理平台建设,要以校园法治化水平提高为前提。对学生学习生活数据的采集和运用,必须得到学生的同意和授权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07