京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年大数据的十大发展趋势
虽然大数据市场将会继续增长这一点毋庸置疑,但企业应该如何应用大数据呢?目前还没有一个清楚的答案。新的大数据技术正在进入市场,而一些旧技术的使用还在继续增长。本文涵盖大数据未来发展的十大趋势,这些趋势可能对2017年及以后的大数据市场产生极大影响。
专家预计,机器学习、预测分析、物联网和边缘计算将对2017年及以后的大数据项目产生深远影响。
1.开放源码
Apache Hadoop、Spark等开源应用程序已经在大数据领域占据了主导地位。一项调查发现,预计到今年年底,近60%企业的Hadoop集群将投入生产。佛瑞斯特的研究显示,Hadoop的使用率正以每年32.9%的速度增长。
专家表示,2017年许多企业将继续扩大他们的Hadoop和NoSQL技术应用,并寻找方法来提高处理大数据的速度。
2.内存技术
很多公司正试图加速大数据处理过程,它们采用的一项技术就是内存技术。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而现代内存技术将数据存储在RAM中,这样大大提高了数据存储的速度。佛瑞斯特研究的报告中预测,内存数据架构每年将增长29.2%。
目前,有很多企业提供内存数据库技术,最著名的有SAP、IBM和Pivotal。
3.机器学习
随着大数据分析能力的不断提高,很多企业开始投资机器学习(ML)。机器学习是人工智能的一项分支,允许计算机在没有明确编码的情况下学习新事物。换句话说,就是分析大数据以得出结论。
高德纳咨询公司(Gartner)称,机器学习是2017年十大战略技术趋势之一。它指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,创建出能够理解、学习、预测、适应,甚至可以自主操作的系统。
4.预测分析
预测分析与机器学习密切相关,事实上ML系统通常为预测分析软件提供动力。在早期大数据分析中,企业通过审查他们的数据来发现过去发生了什么,后来他们开始使用分析工具来调查这些事情发生的原因。预测分析则更进一步,使用大数据分析预测未来会发生什么。
普华永道(PwC)2016年调查显示,目前仅为29%的公司使用预测分析技术,这个数量并不多。同时,许多供应商最近都推出了预测分析工具。随着企业越来越意识到预测分析工具的强大功能,这一数字在未来几年可能会出现激增。
5.智能app
企业使用机器学习和AI技术的另一种方式是创建智能应用程序。这些应用程序采用大数据分析技术来分析用户过往的行为,为用户提供个性化的服务。推荐引擎就是一个大家非常熟悉的例子。
在2017年十大战略技术趋势列表中,高德纳公司把智能应用列在了第二位。高德纳公司副总裁大卫·希尔里(David Cearley)说:“未来10年,几乎每个app,每个应用程序和服务都将一定程度上应用AI。
6.智能安保
随着这些新设备和应用程序上线,许多公司需要新的技术和系统,才能够处理和感知来自物联网的大量数据。
许多企业也将大数据分析纳入安全战略。企业的安全日志数据提供了以往未遂的网络攻击信息,企业可以利用这些数据来预测并防止未来可能发生的攻击,以减少攻击造成的损失。一些公司正将其安全信息和事件管理软件(SIEM)与大数据平台(如Hadoop)结合起来。还有一些公司选择向能够提供大数据分析能力产品的公司求助。
7.物联网
物联网也可能对大数据产生相当大的影响。根据IDC 2016年9月的报告,“31.4%的受访公司推出了物联网解决方案,另有43%希望在未来12个月内部署物联网解决方案。”
8.边缘计算
边缘计算是一种可以帮助公司处理物联网大数据的新技术。在边缘计算中,大数据分析非常接近物联网设备和传感器,而不是数据中心或云。对于企业来说,这种方式的优点显而易见。因为在网络上流动的数据较少,可以提高网络性能并节省云计算成本。它还允许公司删除过期的和无价值的物联网数据,从而降低存储和基础架构成本。边缘计算还可以加快分析过程,使决策者能够更快地洞察情况并采取行动。
9.高薪职业
对于IT工作者来说,大数据的发展意味着大数据技能人才的高需求。IDC称,“到2018年,美国将有181,000个深度分析岗位,是数据管理和数据解读相关技能岗位数量的五倍。”
由于人才缺口过大,罗伯特·哈夫技术公司预测,到2017年数据科学家的平均薪资将增长6.5%,年薪在116,000美元到163,500美元之间(当然这是美国的标准,中国国内目前尚未统计)。同样,明年大数据工程师的薪资也将增长5.8%,在135,000美元到196,000美元之间。
10.自助服务
由于聘请高级专家的成本过高,许多公司开始转向数据分析工具。IDC先前预测,“视觉数据发现工具的增长速度将比其他商业智能(BI)市场快2.5倍,到2018年,所有企业都将投资终端用户自助服务。
一些大数据供应商已经推出了具有“自助服务”能力的大数据分析工具,专家预计这种趋势将持续到2017年及以后。 数据分析过程中,信息技术的参与将越来越少,大数据分析将越来越多地融入到所有部门工作人员的工作方式之中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04