
以大数据助力供给侧结构性改革
习近平总书记指出:“当今世界,科技进步日新月异,互联网、云计算、大数据等现代信息技术深刻改变着人类的思维、生产、生活、学习方式”,“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权”。推进供给侧结构性改革,是“十三五”时期我国经济工作的主线。新形势下要把发展大数据作为重要抓手,充分挖掘和利用海量数据资源中蕴含的巨大价值,加快大数据成果转化和应用,以大数据等现代信息技术的发展,改善供给结构、提升供给质量。
巨大价值:
驱动发展、耦合供需
综观新一轮科技革命浪潮,大数据的重要性越发凸显,不论是人工智能、无人控制技术,还是量子信息技术、虚拟现实等,这些不断涌现出来的全新技术力量,都以大数据作为主要特征和战略资源。可以说,大数据正是新一轮科技革命的核心动能,正是DT(数据处理技术)时代的“钻石宝库”,正成为推动发展新的驱动力。也正因为此,当今世界各主要国家都非常重视大数据的发展,如美国于2012年启动了“大数据研究与发展计划”,英国于2013年推出了“数据能力发展战略规划”,日本于2014年发布了“智能日本ICT战略”,等等。大数据已成为大国博弈中一个新的战略阵地。
对于供给侧结构性改革而言,大数据的重要性还在于其能够集中反映市场需求变化,打通供需之间的内部联系,总结规律、预测趋势、辅助决策,为改革提供精细化服务。推动供给侧结构性改革,落实“三去一降一补”,并不是忽略需求的作用,而是要坚持以市场需求为导向,增强供给结构对需求变化的适应性和灵活性。大数据具有海量、多样、快速、真实等典型特征,利用大数据进行分析,企业能够找准市场需求、明确发展定位,进而创新产品、优化流程、降低成本、提升效益;政府也能够及时追踪企业乃至整个行业的发展动态,精准助力改革。
广泛应用:
助力转型、优化治理
数据是资源,应用是核心。要积极顺应大数据融合发展的趋势,正确把握其与供给侧结构性改革的关系,以大数据的广泛应用,助力产业转型升级,优化政府治理,增强供给体系的质量和效益。
供给侧结构性改革的重点,是减少无效和低端供给,扩大有效和中高端供给,这必定会加快发展的“动力切换”,推动经济的“升级换挡”。大数据本身即是新动能、新增长点,拥有广阔的市场空间;而且随着其向经济各领域的渗透应用,还将对传统产业产生重大冲击,加快产业之间及产业链之间的垂直整合速度,掀起企业内部的组织架构、管理模式等变革。应发挥大数据的牵引作用,深入实施科技创新战略,推动其与实体经济深度融合,促进产业结构向中高端迈进,塑造更多依靠创新驱动、更多发挥先发优势的引领型发展。要运用大数据加快发展新经济,通过“大数据+智能终端”“大数据+智能制造”“大数据+现代物流”等方式,培育壮大更多新产业新业态新模式。要运用大数据改造提升传统产业,加快技术改造、流程再造、信息化建设等进程,着力提升竞争能力和综合效益。
推进供给侧结构性改革,离不开政府这只“有形之手”。要积极借助大数据技术,正确认识和把握市场规律,着力提升政府决策科学化、管理精准化、服务便利化水平。尤其在当前经济发展步入新常态、经济增长呈现“L型”走势的情况下,政府应切实增强对投资、工业、服务业、财政、金融等领域数据资源的获取和利用能力,更多地采集客观数据和运用大数据分析方法,实现对经济运行更为准确、更为高效的监测预警和研判预测,在此基础上完善政策、精准施策。同时,要大力推行“互联网+政务服务”,围绕“数据多跑路、百姓少跑腿”目标,努力打造全覆盖、全联通、全方位、全天候、全过程的服务模式,提升政府服务效率。
突围路径:
问题导向、聚焦发力
近年来,我国大数据呈现出蓬勃发展的态势。在中央层面,国务院于2015年8月底出台了《促进大数据发展行动纲要》,这意味着发展大数据已经上升为国家战略。在地方层面,各地招数频出,在管理机构、系统平台、创新载体、数据交易等方面均有一定的发展。
但从全球角度看,我国大数据仍处于起步阶段。随着近年来大数据及其相关产业的加速发展,各种风险和挑战也日益显现。特别是由于大数据具有极强的技术和信息依赖性,信息资源共享难、核心关键技术缺失、数据安全风险高、产业体系不健全等问题,已成为制约大数据发展的瓶颈。要坚持问题导向,聚焦发力推进大数据战略行动,促进大数据健康发展,更好助力供给侧结构性改革。
信息资源共享是大数据发展的基础。要加快完善宏观制度规定,在已出台的《政务信息资源共享管理暂行办法》基础上,进一步细化、明确公共信息资源开放共享的内容、程序、标准等;要加强大数据共享平台建设,深入实施数据中心大整合工程,积极构建大数据信息共享服务体系。
核心关键技术是大数据发展的支撑。我国大数据建设长期依赖国际通行技术,自主研发实力较弱,特别是芯片和操作系统的自主创新能力不足。要加快核心关键技术的研发布局,强化海量数据存储、数据清理、数据计算、数据分析、数据可视化等领域关键技术攻关,推动制定相关标准和指南,抢占国际竞争的战略“高地”。
数据安全风险防控是大数据发展的生命线。要加快构建大数据安全保障体系,加强重要系统平台及关键信息基础设施安全维护,建立统一高效的数据安全检测和预警通报机制,切实维护涉及国家利益、公共安全等重点领域的信息安全,依法依规打击信息滥用、侵犯隐私、网络诈骗、盗取商业秘密等行为。
立体产业体系是大数据发展的必然趋势。要加强宏观政策引导,积极构建良好的创业创新环境,搭建大数据产业与其他产业联动发展机制,组建全国性、区域性的大数据产业联盟,推动大数据产业链各个环节企业无缝对接、深度合作,共享大数据发展红利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28