
以大数据助力供给侧结构性改革
习近平总书记指出:“当今世界,科技进步日新月异,互联网、云计算、大数据等现代信息技术深刻改变着人类的思维、生产、生活、学习方式”,“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权”。推进供给侧结构性改革,是“十三五”时期我国经济工作的主线。新形势下要把发展大数据作为重要抓手,充分挖掘和利用海量数据资源中蕴含的巨大价值,加快大数据成果转化和应用,以大数据等现代信息技术的发展,改善供给结构、提升供给质量。
巨大价值:
驱动发展、耦合供需
综观新一轮科技革命浪潮,大数据的重要性越发凸显,不论是人工智能、无人控制技术,还是量子信息技术、虚拟现实等,这些不断涌现出来的全新技术力量,都以大数据作为主要特征和战略资源。可以说,大数据正是新一轮科技革命的核心动能,正是DT(数据处理技术)时代的“钻石宝库”,正成为推动发展新的驱动力。也正因为此,当今世界各主要国家都非常重视大数据的发展,如美国于2012年启动了“大数据研究与发展计划”,英国于2013年推出了“数据能力发展战略规划”,日本于2014年发布了“智能日本ICT战略”,等等。大数据已成为大国博弈中一个新的战略阵地。
对于供给侧结构性改革而言,大数据的重要性还在于其能够集中反映市场需求变化,打通供需之间的内部联系,总结规律、预测趋势、辅助决策,为改革提供精细化服务。推动供给侧结构性改革,落实“三去一降一补”,并不是忽略需求的作用,而是要坚持以市场需求为导向,增强供给结构对需求变化的适应性和灵活性。大数据具有海量、多样、快速、真实等典型特征,利用大数据进行分析,企业能够找准市场需求、明确发展定位,进而创新产品、优化流程、降低成本、提升效益;政府也能够及时追踪企业乃至整个行业的发展动态,精准助力改革。
广泛应用:
助力转型、优化治理
数据是资源,应用是核心。要积极顺应大数据融合发展的趋势,正确把握其与供给侧结构性改革的关系,以大数据的广泛应用,助力产业转型升级,优化政府治理,增强供给体系的质量和效益。
供给侧结构性改革的重点,是减少无效和低端供给,扩大有效和中高端供给,这必定会加快发展的“动力切换”,推动经济的“升级换挡”。大数据本身即是新动能、新增长点,拥有广阔的市场空间;而且随着其向经济各领域的渗透应用,还将对传统产业产生重大冲击,加快产业之间及产业链之间的垂直整合速度,掀起企业内部的组织架构、管理模式等变革。应发挥大数据的牵引作用,深入实施科技创新战略,推动其与实体经济深度融合,促进产业结构向中高端迈进,塑造更多依靠创新驱动、更多发挥先发优势的引领型发展。要运用大数据加快发展新经济,通过“大数据+智能终端”“大数据+智能制造”“大数据+现代物流”等方式,培育壮大更多新产业新业态新模式。要运用大数据改造提升传统产业,加快技术改造、流程再造、信息化建设等进程,着力提升竞争能力和综合效益。
推进供给侧结构性改革,离不开政府这只“有形之手”。要积极借助大数据技术,正确认识和把握市场规律,着力提升政府决策科学化、管理精准化、服务便利化水平。尤其在当前经济发展步入新常态、经济增长呈现“L型”走势的情况下,政府应切实增强对投资、工业、服务业、财政、金融等领域数据资源的获取和利用能力,更多地采集客观数据和运用大数据分析方法,实现对经济运行更为准确、更为高效的监测预警和研判预测,在此基础上完善政策、精准施策。同时,要大力推行“互联网+政务服务”,围绕“数据多跑路、百姓少跑腿”目标,努力打造全覆盖、全联通、全方位、全天候、全过程的服务模式,提升政府服务效率。
突围路径:
问题导向、聚焦发力
近年来,我国大数据呈现出蓬勃发展的态势。在中央层面,国务院于2015年8月底出台了《促进大数据发展行动纲要》,这意味着发展大数据已经上升为国家战略。在地方层面,各地招数频出,在管理机构、系统平台、创新载体、数据交易等方面均有一定的发展。
但从全球角度看,我国大数据仍处于起步阶段。随着近年来大数据及其相关产业的加速发展,各种风险和挑战也日益显现。特别是由于大数据具有极强的技术和信息依赖性,信息资源共享难、核心关键技术缺失、数据安全风险高、产业体系不健全等问题,已成为制约大数据发展的瓶颈。要坚持问题导向,聚焦发力推进大数据战略行动,促进大数据健康发展,更好助力供给侧结构性改革。
信息资源共享是大数据发展的基础。要加快完善宏观制度规定,在已出台的《政务信息资源共享管理暂行办法》基础上,进一步细化、明确公共信息资源开放共享的内容、程序、标准等;要加强大数据共享平台建设,深入实施数据中心大整合工程,积极构建大数据信息共享服务体系。
核心关键技术是大数据发展的支撑。我国大数据建设长期依赖国际通行技术,自主研发实力较弱,特别是芯片和操作系统的自主创新能力不足。要加快核心关键技术的研发布局,强化海量数据存储、数据清理、数据计算、数据分析、数据可视化等领域关键技术攻关,推动制定相关标准和指南,抢占国际竞争的战略“高地”。
数据安全风险防控是大数据发展的生命线。要加快构建大数据安全保障体系,加强重要系统平台及关键信息基础设施安全维护,建立统一高效的数据安全检测和预警通报机制,切实维护涉及国家利益、公共安全等重点领域的信息安全,依法依规打击信息滥用、侵犯隐私、网络诈骗、盗取商业秘密等行为。
立体产业体系是大数据发展的必然趋势。要加强宏观政策引导,积极构建良好的创业创新环境,搭建大数据产业与其他产业联动发展机制,组建全国性、区域性的大数据产业联盟,推动大数据产业链各个环节企业无缝对接、深度合作,共享大数据发展红利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15