京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据+传媒”影响各行业转型与变革
2016中关村大数据日活动暨京津冀协同发展高峰论坛在中关村国家自主创新示范区展示中心会议中心开幕。围绕 “数据驱动创新,智慧引领未来”这一主题,来自政府、学术界、企业界、传媒界嘉宾,就大数据技术创新、成果转化和产业融合等问题进行全面、深入交流和研讨。北京北大方正承办“2016中关村大数据日——传媒大数据分论坛”,深入探讨并交流了大数据给传媒行业带来的深刻变化,以及如何通过大数据应用构建传媒的核心竞争力等话题。
北京大数据研究院院长、中国科学院院士鄂维南在开场致辞中提到,从长远来看,互联网大数据在传媒行业应用空间非常大。一方面,所有的人都需要用到媒体,另一方面,在现在的条件下,有可能让每一个人都成为新闻界一员。和日本、美国等相比,中国的传统媒体受到的互联网冲击力度更大,然而,互联网只是第一步,大数据是下一步,智能化的一步。希望方正电子和其他企业一起,使传媒大数据应用更上一层楼。
北京师范大学新闻传播学院执行院长喻国明以《技术发展下的传媒业态与转型》为主题,阐述了影响中国传媒业发展变化的基本动因。他认为,智能化的引入,对于整个互联网未来的产业发展具有特别重要的意义,谁能够利用智能化的技术,处理数据的使用,并以更加有效的方式跨界融合整合,谁就能够夺得市场、产业的主动权。在下一轮发展当中,对于数据的智能化处理映射出这个产业最重要的发展路径。
北大计算机研究所教授、博士生导师彭宇新分享了“跨模态大数据分析与识别技术”的最新进展。他介绍说,随着媒体数据的快速增长,出现了两个问题,一是存在大量未上传且敏感的数据“管不住”,二是图像视频很难识别导致“用不好”。不过,随着多模态识别关系和系统的开发与建立,可以突破网络有害信息难以识别、难以利用的问题,最终应用于互联网监管领域,从而促进媒体大数据的运用。
在新闻媒体快速数字化的今天,在数据处理领域出现了哪些新进展?北大计算机研究所研究员、博士生导师赵东岩表示,媒体大数据的语义搜索和系统,可以基于互联网和新闻出版资源的信息,包括社交网络,进行语义分析,构建出专业化的知识库将媒体的信息与知识服务能力提高到新的水平。
新华社中国经济信息社新华丝路事业部总监魏薇表示,目前新华社中国经济信息社正在为国家“一带一路”战略提供信息服务,而这个体系的打造,离不开大数据的支持,需要利用“互联网+信息服务”的思维,打造以“精准数据+智库”为支撑的新华丝路信息服务体系。
人民网技术总监邢华以《大数据时代的传统媒体》为题做了分享。介绍了人民网对大数据应用的成果,重点介绍了正在建设的人民网数据中心项目。
作为传媒行业领先的技术、服务提供商和行业咨询专家,方正电子全力打造DT时代的智慧媒体,已为300余家报社提供DT时代的媒体融合解决方案,在当天的论坛上,来自方正电子的3位技术专家分享了针对互联网大数据的深度挖掘与利用技术、方正传媒大数据的成果以及知识体系建设方案。
方正电子互联网大数据技术开发部部长张丹深度解读了对互联网大数据进行挖掘的方式与技术,其重点是围绕着互联网的数据、业务信息资源和知识库,从内容、人、位置三个方面展开,包括态势的分析,以及敏感事件、热点话题、传播溯源等角度。
方正电子媒体大数据总经理卢岚分享了如何借助大数据,推进媒体的新闻生产,帮助新媒体运营,并开拓媒体经营服务的转型,从而实现新型媒体集团的转型与飞跃。卢岚认为,在DT时代,新闻的未来是分析数据,而媒体的未来就是数据能力。我们的目标是帮助传统媒体打造成为“智慧媒体”,它的核心目标就是以用户为中心,实现精准传播、精准营销和精准服务。
今年中关村大数据日关注的一个重点是,以大数据的思维、技术、模式、产品、服务等突破行政藩篱和区域界线,而由方正电子承办的此次传媒大数据分论坛则体现了整个业界针对传媒大数据领域的更多探索。无论如何,大数据时代已经来临,并在加速影响着各行各业的产业转型与变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31