
一、概念(分析-均值比较-单因素方差分析):
按照单因子变量(自变量)生成对定量因变量的单因素方差分析。方差分析用于检验数个均值相等的假设。这种方法是双样本t 检验的扩展。除了确定均值间存在着差值外,您可能还想知道哪些均值之间存在着差值。比较均值有两类检验方法:先验对比和两两比较检验。对比是在试验开始前进行的检验,而两两比较检验则是在试验结束后进行的。您也可以检验各个类别的趋势。
二、假设:(多个总体均值是否相等的假设检验问题)
每个组是来自正态总体的独立随机样本。尽管数据应对称,但方差分析对于偏离正态性是稳健的。各组应来自方差相等的总体。为了检验这种假设,请使用Levene的方差齐性检验。多个总体均值是否相等的假设检验问题。原假设:组内均值(组内离差平方和)=组间均值(组间离差平方和)
三、满足条件:
1、在各个水平之下观察对象是独立随机抽样,即独立性;2、各个水平的因变量服从正态分布,即正态性;3、各个水平下的总体具有相同的方差,即方差齐;
四、多项式(分析-均值比较-单因素方差分析-对比)
1、多项式。将组间平方和划分成趋势成分。可以检验因变量在因子变量的各顺序水平间的趋势。例如,您可以检验各个顺序级别的最高工资水平间的线性趋势(上升或下降)。
◎度。可以选择1 度、2 度、3 度、4 度或5 度多项式。
2、系数。用户指定的用t 统计量检验的先验对比。为因子变量的每个组(类别)输入一个系数,每次输入后单击添加。每个新值都添加到系数列表的底部。要指定其他对比组,请单击下一个。用下一个和上一个在各组对比间移动。
五、假定方差齐性(分析-均值比较-单因素方差分析-两两比较)
1、LSD(Least-significant difference):最小显著差数法, 用t检验完成各组均值间的配对比较。
2、Bonferroni(LSDMOD)用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。
3、Sidak:计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。
4、Scheffe:用F分布对所有可能的组合进行同时进入的配对比较。此法可用于检查组均值的所有线性组合,但不是公正的配对比较。
5、R-E-G-W F:基于F检验的Ryan-Einot-Gabriel-Welsch多重比较检验
6、R-E-G-W Q:基于Student Range分布的Ryan-Einot-Gabr iel-Welsch range test多重配对比较。
7、S-N-K:用Student Range分布进行所有各组均值间的配对比较。
8、Tukey:用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。
9、Tukey’s-b: 用stndent Range分布进行组间均值的配对比较,其精确值为前两种检验相应值的平均值。
10、Duncan:指定一系列的Range值,逐步进行计算比较得出结论。
11、Hochberg‘s GT2:用正态最大系数进行多重比较。
12、Gabriel:用正态标准系数进行配对比较,在单元数较大 时,这种方法较自由。
13、Waller-Dunca:用t统计量进行多重比较检验,使用贝叶斯逼近的多重比较检验法。
14、Dunnett:多重配对比较的t检验法,用于一组处理对一个控制类均值的比较。默认的控制类是最后一组。
六、未假定方差齐性(分析-均值比较-单因素方差分析-两两比较)
1、Tamhane’s T2:基于t检验进行配对比较。
2、Dunnett’s T3:基于Student最大模的成对比较法。
3、Games-Howell:Games-Howell比较,该方法较灵活。
4、Dunnett’s C:基于Student极值的成对比较法。
七、统计量(分析-均值比较-单因素方差分析-两两比较-选项)
1、描述性。计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最小值、最大值和95% 置信区间。
2、固定和随机效果。显示固定效应模型的标准差、标准误和95% 置信区间,以及随机效应模型的标准误、95% 置信区间和成分间方差估计。
3、方差同质性检验。计算Levene 统计量以检验组方差是否相等。该检验独立于正态的假设。
4、Brown-Forsythe。计算Brown-Forsythe 统计量以检验组均值是否相等。当方差相等的假设不成立时,这种统计量优于F 统计量。
5、Welch。计算Welch 统计量以检验组均值是否相等。当方差相等的假设不成立时,这
种统计量优于F 统计量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15