
大数据产业十年蓝图开启 数据变现突围信息孤岛
“证明我妈是我妈”、“老年证丢失找派出所开证明”、异地办理准生证跑断腿儿……这些让人“添堵”的证明或将成为历史。9月5日,国务院印发《促进大数据发展行动纲要》 (下称《纲要》),划定未来十年的发展目标。《纲要》特别提出在2017年底前形成跨部门数据资源共享共用格局;在2018年底前建成国家政府数据统一开放平台。小到便利民众的衣食住行,大到促进征信体系和社会信用建设,深刻影响产业布局和行政管理方式,都有大数据的用武之地。蕴含着巨大市场机会的大数据产业正成为稳增长背景下被着力培育的经济新增点。
数据红利
在我国人口红利不再的背景下,数据红利正被提至国家战略高度。尤其在信息经济发展迅猛、万众创新被大力推进的今天,加快大数据部署,深化大数据应用,已成为稳增长、促改革、调结构、惠民生和推动政府治理能力现代化的内在需要和必然选择。
为此,近日出台的《纲要》提出了未来5-10年我国大数据产业的发展目标:打造精准治理、多方协作的社会治理新模式;建立运行平稳、安全高效的经济运行新机制;构建以人为本、惠及全民的民生服务新体系;开启大众创业、万众创新的创新驱动新格局;培育高端智能、新兴繁荣的产业发展新生态。
据悉,这是我国发布的首个大数据国家行动计划。《纲要》还从政府大数据、大数据产业、大数据安全保障体系三个方面着手推进大数据领域十大工程,包括政府数据资源共享开放工程、国家大数据资源统筹发展工程、政府治理大数据工程等。
剑指信息壁垒
目前,政府开放数据运动在全球逐步兴起。政府部门的数据资源是大数据产业发展的重要宝藏,但条块分割的部门割据却让数据失去了流动性和价值。无论是“证明我妈是我妈”,还是异地补办身份证难上加难,亦或是企业失信、社会信用体系建设的滞后,都与此不无关系。
业界分析认为,推动我国大数据产业快速发展,一是必须突破各级政府部门之间的信息孤岛,避免数据信息无法共享、重复建设、重复采集等问题。二是建立各地各部门规范标准,促进数据的有效整合,形成互联互通,避免“数据打架”。
此前,《国务院办公厅关于促进电子政务协调发展的指导意见》提出,将数据纳入到统一平台上,由各地区各部门对现有业务专网应用进行合理分类,分别向国家电子政务内网或外网迁移。
《纲要》则明确提出了数据共享、开放的时间表:在2017年底前形成跨部门数据资源共享共用格局,2018年底前建成国家政府数据统一开放平台,率先在信用、交通、医疗、卫生、就业、社保、地理、文化、教育、科技、资源、农业、环境、安监、金融、质量、统计、气象、海洋、企业登记监管等重要领域实现公共数据资源合理适度向社会开放,带动社会公众开展大数据增值性、公益性开发和创新应用,充分释放数据红利;2020年底前,逐步实现信用、交通、医疗、卫生等民生保障服务相关领域的政府数据集向社会开放。
企业忙分羹
有机构预测,当前我国大数据市场仍处于起步阶段,2014年市场规模仅为767亿元,但是到2020年,将增至8000亿元。
正如马云所说,人类在正从IT时代走向DT时代。大量数据正聚合到不同的平台上,成为企业的核心资产。而依据大数据分析,更多企业可以实现商业模式的颠覆式创新,推出不同用户群体的个性化、定制化产品。
事实上,BAT、电信运营商等市场各方早已开始展开大数据产业布局。在资本市场上,越来越多的上市公司也开始涉足大数据领域,据统计显示,大数据概念成份股已扩容至56个。
业内人士指出,根据去年大数据市场行业投资结构来看,医疗和政府行业占比分别为9%和12.7%,未来投资空间较大。而大数据在医疗和政府公共事业的应用同时存在契合度和应用可能性较高,但是成熟度较低的特点,具有很好的发展前景。
而长江证券则表示,《纲要》印发将大数据产业发展推到具体实施层面,将充分利好数据采集、数据中心建设、数据运营与应用及数据安全保障等细分行业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08