
大数据发展谨防"一哄而上" 警惕大数据应用陷阱
作为近几年来最热门的网络概念之一,大数据在多个领域的落地显示出其巨大优势,如出行类APP在城市中为用户提供快速的车辆调度,又如谷歌智能系统阿尔法围棋在人机围棋大战中获胜。然而大数据应用喜忧参半亦是事实,曾作为大数据具备革命性潜力证明的谷歌流感趋势近几年的预测结果并不尽如人意。
大数据是否被过度热炒?现行大数据分析是否可靠?这些疑问在大数据已作为国家战略被写进“十三五”规划纲要的当下迫切需要得到解答。北京大学国家发展研究院教授沈艳在接受海外网专访时强调,在明确大数据局限性和可行性的基础上,大数据产业才能够扎实发展。
警惕大数据应用陷阱
尽管大数据的定义见仁见智,但其海量的数据规模、动态的数据体系、多样的数据类型等是业界的共识。沈艳表示,大数据能够以前所未有的精细度描画世界,如运用得当,能够帮助人们快速刻画新旧经济更替,给予产业发展方向以可视化指导,并为政府决策提供参考。
但是,大数据应用也面临陷阱,沈艳表示,“有一种看法认为,有了大数据就有了总体,就不再需要科学抽样了。”这种“大数据自大”倾向之所以值得警惕,一方面在于,数据反映的信息可能只是总体的一部分;另一方面,总体可能会在时间推移中发生变化。例如,“使用谷歌搜索流感相关信息的用户”和“美国流感人群”这个总体并不完全重合,因此用后者预测流感趋势存在先天不足。
陷阱的出现与大数据的收集方式息息相关。沈艳指出,传统数据或者来自问卷调查,或者即便是经营活动留下的数据,也往往有规范标准,使得数据含义前后可比。而大数据更多是生产经营等各类活动的附属产品,当服务于主营业务的系统架构不断变化,数据生成规律将随之变化。而数据分析方很可能对此全然不知或不能深刻体会,沿用以往的分析方法,就很容易产生结论的偏差。
分析大数据需要人才
“当新技术来临,尤其是面对经济新旧转型,我们迫切需要新的增长点,很容易未经深究就相信新技术的力量。但实际上只有在清晰地知道它各种各样局限的基础上,我们才能去用它。”这是沈艳对当前大数据运用的看法。
对比美国大数据产业图景(分为架构、分析、应用三部分),沈艳发现,“十三五”规划中大数据战略的内容集中在架构和应用部分,比如加快政府数据开放共享,进行海量数据采集、存储、清洗、分析发掘、可视化等领域关键技术攻关。
她指出,应加强对大数据分析的重视,包括回归问题本源,进行数据可行性分析等,也表示并非所有企业都有能力进行大数据分析。“数据分析具有门槛,要防止一哄而上、不管是否适合自己都要赶上潮流。”沈艳坦言,即便没有遵循科学规范的分析方法,一些大数据产品也能够在一定程度上解决问题,但是其商业模式是否真正可行、是否能够持续很难确认。而且若导致重要领域出现问题,可能产生重大损失。
而目前的一大桎梏是大数据分析人才的紧缺。沈艳认为,人才培养触及产业健康发展的核心,大数据发展亟须既懂关键技术又懂专业领域的跨界人才。此外,国家还需对决策者和民众有相应的培训投入。
采访中,沈艳仍然对大数据前景充满信心,她期待大数据产业帮助中国的新经济成长起来,让中国持续成为世界经济的引擎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15