
大数据发展谨防"一哄而上" 警惕大数据应用陷阱
作为近几年来最热门的网络概念之一,大数据在多个领域的落地显示出其巨大优势,如出行类APP在城市中为用户提供快速的车辆调度,又如谷歌智能系统阿尔法围棋在人机围棋大战中获胜。然而大数据应用喜忧参半亦是事实,曾作为大数据具备革命性潜力证明的谷歌流感趋势近几年的预测结果并不尽如人意。
大数据是否被过度热炒?现行大数据分析是否可靠?这些疑问在大数据已作为国家战略被写进“十三五”规划纲要的当下迫切需要得到解答。北京大学国家发展研究院教授沈艳在接受海外网专访时强调,在明确大数据局限性和可行性的基础上,大数据产业才能够扎实发展。
警惕大数据应用陷阱
尽管大数据的定义见仁见智,但其海量的数据规模、动态的数据体系、多样的数据类型等是业界的共识。沈艳表示,大数据能够以前所未有的精细度描画世界,如运用得当,能够帮助人们快速刻画新旧经济更替,给予产业发展方向以可视化指导,并为政府决策提供参考。
但是,大数据应用也面临陷阱,沈艳表示,“有一种看法认为,有了大数据就有了总体,就不再需要科学抽样了。”这种“大数据自大”倾向之所以值得警惕,一方面在于,数据反映的信息可能只是总体的一部分;另一方面,总体可能会在时间推移中发生变化。例如,“使用谷歌搜索流感相关信息的用户”和“美国流感人群”这个总体并不完全重合,因此用后者预测流感趋势存在先天不足。
陷阱的出现与大数据的收集方式息息相关。沈艳指出,传统数据或者来自问卷调查,或者即便是经营活动留下的数据,也往往有规范标准,使得数据含义前后可比。而大数据更多是生产经营等各类活动的附属产品,当服务于主营业务的系统架构不断变化,数据生成规律将随之变化。而数据分析方很可能对此全然不知或不能深刻体会,沿用以往的分析方法,就很容易产生结论的偏差。
分析大数据需要人才
“当新技术来临,尤其是面对经济新旧转型,我们迫切需要新的增长点,很容易未经深究就相信新技术的力量。但实际上只有在清晰地知道它各种各样局限的基础上,我们才能去用它。”这是沈艳对当前大数据运用的看法。
对比美国大数据产业图景(分为架构、分析、应用三部分),沈艳发现,“十三五”规划中大数据战略的内容集中在架构和应用部分,比如加快政府数据开放共享,进行海量数据采集、存储、清洗、分析发掘、可视化等领域关键技术攻关。
她指出,应加强对大数据分析的重视,包括回归问题本源,进行数据可行性分析等,也表示并非所有企业都有能力进行大数据分析。“数据分析具有门槛,要防止一哄而上、不管是否适合自己都要赶上潮流。”沈艳坦言,即便没有遵循科学规范的分析方法,一些大数据产品也能够在一定程度上解决问题,但是其商业模式是否真正可行、是否能够持续很难确认。而且若导致重要领域出现问题,可能产生重大损失。
而目前的一大桎梏是大数据分析人才的紧缺。沈艳认为,人才培养触及产业健康发展的核心,大数据发展亟须既懂关键技术又懂专业领域的跨界人才。此外,国家还需对决策者和民众有相应的培训投入。
采访中,沈艳仍然对大数据前景充满信心,她期待大数据产业帮助中国的新经济成长起来,让中国持续成为世界经济的引擎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29