
新机遇:基于互联网大数据的管理创新
信息技术革命与市场的重构,已经诱发了一种新的网络社会形式。网络社会崛起带来社会结构转型,国内外互联网数字和信息产业正面临巨大变革。对于管理者来说,如何迎接历史上最深刻的信息技术革命,以及方兴未艾的数据革命和智慧革命?
2016年6月,中国网民7.10亿,手机网民6.56亿,互联网普及率达到51.7%,移动互联网塑造的社会生活形态进一步加强。我们有世界上最大的互联网舆论场、最大的市场。互联网时代,信息海洋,数据大爆发,一切都被记录为数据,都变得可以测量。数据、信息已经成为21世纪以后最宝贵的资源和财富。
1数据大爆发:互联网信息数据时代提出的管理学命题
数据泛滥带来严峻的管理挑战。许多互联网公司,甚至是一些新兴的创业公司,都已经很容易就能具有这种超政府的能力,也有专家称其为“超国家能力”、“信息核武器”。
个体、公民和任何单一群体在这种大数据公司面前是不可能有平衡的制约能力的,甚至有时是“无能为力”。如何保障数据信息的正当使用,需要管理者与使用者共同思考,相关的管理举措更需要具有前瞻意识。
2及时准确把握关键数据,成为有效管理的先决条件
互联网信息和舆论传播相互激荡,瞬息万变,信息的不确定性,突发性的舆情,成为管理面临的挑战和机遇。一系列非传统的管理风险和舆情危机的大量案例出现,推动危机管理和风险管理体系不断成熟。
近年来,网络舆情汹涌而来,各类突发事件和舆情危机层出不穷,政府企业和领导干部疲于应对。在这种形势下,需要努力研究当代舆论环境下的公共治理,为党和政府施政提供舆情分析,进行社会舆论传播力与影响力评估,为社会管理提供及时准确的信息支持和决策参考。
3数据科学理论与业界实践提升了管理科学水平
互联网信息数据收集、增值分析,衍生出围绕管理决策的数据和管理科学,具备了前沿性、科学性和综合性学科的较高门槛。新闻跟帖、BBS、微博、SNS社交网站中,大量的是非结构化数据,这些数据的抓取、聚类和语义分析有很高的技术门槛,需要具有较强技术和传媒经验的专业机构承担舆情追踪、解读和研判的重任。
在智库传统的专业研究手段,如抽样调查、焦点调查、实验法、德尔菲法、成本效用分析等之外,舆情监测的智能化搜索技术、数据挖掘和文本分析,可丰富信息管理科学的研究手段,提高管理水平。
4互联网信息服务迈向“数据+调查+咨询”模式
在大数据时代,随着技术的发展,数据都是可计算、可挖掘的,受众要变为用户,互联网更加强调用户的概念,用户不仅仅是信息的接受者,也是数据的生产者。因为媒体与受众关系、媒体经营模式的转变。规模经济走向粉丝经济,通过跨界整合资源构建生态圈价值。
“数据+调查+咨询”的转型是信息增值业务发展的必然趋势,也是实现持续发展乃至跨越性发展的必由之路。媒体型智库可依托自身影响力,搭建高端平台,培养智库团队,做好政策解读,决策咨询,生产思想,推动社会沟通和共识的形成。
5在全球治理格局和体系构建中探索中国管理范式
互联网改变着全球和国家治理能力、权力格局、治理秩序和现代化治理体系。我国信息革命和数字经济的巨大发展,正不断改变着全球政治经济文化面貌和格局。比如,“互联网+”、双创、互联网经济、世界互联网大会、G20会议的召开等。我国对全球空间与治理秩序产生巨大影响。
我们需要研究互联网新媒体和大数据的建设,以及世界各国有关互联网信息和数据的研究成果,为中国的产业创新和社会管理创新提供决策参考。同时,需要为我国企业和文化“走出去”进行声誉形象、风险管理研究,以强化组织“关口前移、全程管理”的能力为目标,通过方案、制度、流程、操作指南的制定和实施,来帮助组织建立、健全声誉风险管理体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15