
数据分析?这么简单的描述性统计先学了好吗
用户研究中数据分析的目的,常见有三种:
归纳分析、差异分析、关联分析
今天我们聊一下,在以归纳分析为目的的数据分析中,集中趋势和离散趋势怎么玩,形状测量将在《Part.5: 不用的数据类型对应的视觉化呈现》中一并聊。
如上图,归纳分析中对集中趋势和离散趋势的描述我们统称为描述性统计,这是统计分析中最基础的概念,也是日常的数据分析如问卷调研中用得最多的统计方法。本文中会另外聊到一个事情,就是在分析好集中趋势和离散趋势后,还需要判断这个结果在多大程度上可以相信,也就是置信区间的玩法。
集中趋势
集中趋势可以简单地理解成用单个数值来代表一组数据。最常见的三种集中趋势指标是平均数(mean)、中位数(median)和众数(mode)。
a.平均数
平均数大家都很熟悉,用户的平均年龄、平时在线时长、平均客单价等等,他是拿到用户数据后第一件要做的事情。大多数用户体验度量的平均值都能提供非常有用的信息,比如新版本上线后采用5分或7分量表获取用户的体验满意度,最简单的方法就是根据采集的数据计算出平均值,将平均值作为用户满意度结果进行报告。这份满意度报告展示的第一个数据就已经呈现了,读者对该次版本的满意度就有了初步的印象。
b.中位数(中数)
中位数,顾名思义,就是将数据从小到大或从大到小进行排序排序,然后取中间的数字作为这一列数据的中位数。如果正好样本量是偶数,那么就平均一下中间的两个数据得到中位数。
什么时候该用中位数而不是平均数来表示呢?如下表,一项可用性研究中12名参加者完成某任务的时间(秒)。
上图这组数据中,第12位参与者大大拉高了平均值,但是中位数不受其影响。所以一般情况下存在某些数据偏差太大的情况,中位数比平均数更适用。
c.众数
能用字面意思理解的概念都是好概念,众数也同样可以从字面理解,就是出现次数最多的那个数值。如1、2、2、3、6这组数据的众数为2。众数的使用场景比较少,但当一组数据包含的数值范围很小(如1-3分的主观评价量表,满意、一般、不满意)时,众数会更有价值。
一般收集到用户数据后,我们录入和分析工具使用最多的是excel和spss,数据量未超过一万条(样本量未超1万)可以直接在excel中进行计算,超过一万条后excel的处理速度会变慢,可以考虑spss或其他统计软件。
[excel 计算方法]
(1)平均数:可以用“=AVERAGE”函数计算
(2)中数:可以用“=MEDIAN”函数计算
(3)众数:可以用“=MODE”函数计算
离散趋势
实例:
新版本上线后针对操作简便性与账户安全性两个维度进行满意度的问卷调研。现选取10名核心用户分别在两个维度上进行满意度评分,结果如下表。
如上表,两组得分数据平均值均为5.5,但是操作简便性维度上,10名用户间的差异很大,而账户安全性维度上10名用户的差异很小。也就是说,在操作简便性上,其实只有一半用户表示最为满意,但另一半用户认为一般及不满意;在账户安全性维度上,所有用户都较满意,评价较统一。
平均数相同的两个维度,其实样本间差异非常大,这时候如果只用平均数来表示这次调研的整体表现,结果就会对读者产生误导,因为样本间的差异过大时将平均数作为产品的评判和改进依据是没有意义的,应该从离散的数据中找到数据背后的疑问点进行深入了解。
如果发现了样本背景有差异,则应该进一步分析,比如按照不同样本背景将用户进行分组,验证是否的确由于这个原因引起了整体数据的离散,然后再通过其他质性的方式深入了解样本背景与其数据表现的相关性或因果性。
从上面的事例中,我们发现:除了需要报告数据的集中趋势,数据的离散趋势即变异性也是必不可少的。
变异性描述统计显示的是数据的分散或离散程度。如上表中,不同用户对操作简便性满意度的评分差异很大,也就是说数据离散程度高、集中趋势低;不同用户对账户安全性满意度的评分差异较小,也就是说数据离散程度低、集中趋势高。
在实际的数据统计中,在99.9%的情况下,我们都无法像上述例子那样直接用肉眼判断数据的离散程度,需要借助几个数据指标来判断。表示离散趋势的常见指标为全距(range)、方差(variance)和标准差(standard deviation)。
a.全距
全距就是一组数据中最大值和最小值之间的距离。计算最大值和最小值的差距即发现极端值,所以查看全距大小是初步检验数据离散趋势的一个最快捷方法。
b.方差
方差说明的是一组数据中每个数据与平均数的离散程度。具体公式在此就不细述,因为感谢强大的excel公式,足以帮我们从繁复的公式中解放出来。具体操作详见下文[excel计算方法]部分。
c.标准差
标准差其实就是开方后的方差。标准差的原理和方差的原理是一样的,只是将方差开方后,它的单位与原始数据单位就一致了,所以业内普遍用标准差反映数据的离散程度。标准差越大就说明每个数据与平均值的差异很大,能够证明这组数据之间差异很大(离散程度高)。
[excel计算方法]
(1)全距:用“=MIN”函数得到最小值;用“=MAX”函数得到最大值;MAX-MIN得到的就是全距
(2)方差:用“=VAR”函数就可以得出方差
(3)标准差:用“=STAEV”函数就能得出标准差
置信区间
上述满意度的问卷中,考虑到成本和时间等各方面因素,只能搜集到200份有效问卷,如果老板对于得出的数据结果有质疑:200份够吗?可以代表总体的实际评分吗?这时候就可以潇洒地甩一个置信区间给他(老板我这么说你是不会介意 对吗,看了这里不要扣我绩效)。
置信区间是对总体样本实际平均值的估计。一般情况下是先自己设置好置信区间,再算出这个置信区间下真实的平均数范围是什么样。
如置信区间是95%,说明你得出的“真实的平均数范围”这一结论它的可信度在95%,相应的错误概率(也就是α系数,α系数在计算操作的时候会用到)就是5%。
我们通常选用的置信区间有99%、95%和90%。如果你需要估值的置信区间有更大的把握,就选择99%的置信区间;如果对需要估值的置信区间不是很有把握,就选择90%的置信区间。
实例:
如果我们需要根据上述10名用户对账户安全性的满意度评分来估计总样本的实际满意度,我们不可能让所有用户都来填写问卷,但是你可以根据获得的10份样本估计满意度可能的范围(这里只是用虚拟的数据举例,实际的问卷调研样本数量要求会根据具体情况而定)。
在上表中,得到平均数为5.5,90%置信区间下的估值结果为0.15(0.145269539,取小数点后两位),所以可以将结果表述为这个平均数的90%置信区间是5.5±0.15。也就是说,你有90%的把握判断出所有用户对账户安全性的满意度在5.35至5.65之间(置信区间非常有用,可以当作汇报平均值的常规项)。数据分析培训
[excel计算方法]
在excel中用“CONFIDENCE”函数“=CONFIDENCE(α系数、标准差、样本量)”就能快速计算置信区间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29