
一个优秀的运营该如何做好实时分析
在互联网行业精益化运营的背景下,数据分析已成为运营的标配,大家都希望通过精细的分析来提高运营的效率。随着商品秒杀、爆款文章、产品快速迭代等运营手段不断增多,以往小时级的流量监测已经不能满足运营者的需求。我们需要对网站平台上的每一分钟、每一个访客、每一次操作都进行记录,以满足我们实时监测和快速决策的需要。
这种分钟级别的数据监测和分析,就是我们今天要介绍的“实时分析”。
一、实时分析需要关注的三大指标
数据化运营需要关注的指标非常多,如PV、UV、转化率、留存率等等。忽略留存、转化等结果型指标,在分钟级的实时监测中,运营主要关注网站平台的三大类数据指标:1)访问用户量,2)访问来源,3)访问行为。
用户访问量、访问来源和访问行为对网站平台的运营具有重要意义:
1.分钟级的访问量(下图模块1)可以帮助我们了解流量的趋势,方便及时发现流量的异常;
2.访问来源(下图模块2)的监测方便我们了解实时访问来源和权重,为渠道优化做准备;
3.访问行为(下图模块3)的实时监测帮助我们了解用户的访问偏好,方便后期进行网站内容优化。
现有的SaaS 产品中,将上述实时指标模块统一于一个后台页面中,这样的设计便于运营者对实时的情况一目了然、运筹帷幄。
二、通过三个案例讲透实时分析
运营者一般都比较关注网站平台的PV、UV及其走势,这也是网站流量分析的基础指标。以天或者小时为颗粒度的流量分析较为粗糙,会掩盖很多时间节点上的流量波动细节。如果我们用分钟级的粒度来观察流量,又会有什么发现呢?
某内容社区7月16日16:30-16:35 用户访问量激增,是平时的4倍左右(如上图圆圈所示)。社区的运营人员马上就发现了这个异常值,借助[访问来源]发现该节点访问来源排第一位的是微信(mp.weixinbridge.com),然而当时并不知具体原因。在稍后的朋友圈分享的文章中发现,当时某运营大咖在一个微信群分享中推荐了该社区平台,贡献了16:30-16:35社区激增的访问量。该社区的PR果断抓住这次机会,邀请该运营大咖来该社区做知识分享,起到了非常好的传播效果。
这是通过激增流量发现合作渠道的典型案例,值得所有企业思考。反之,如果流量暴跌,甚至降为零,那么这个时候就马上检查网站/APP是否正常,以便及时修复问题。
2.精准投放:渠道优化与反作弊
作为一个运营人员,如果产品在各大渠道上投放了广告,则可以通过[访问来源]来时刻监测渠道的广告效果,进而确定渠道带来的访问用户量和质量。
某互联网企业近期做了系列的渠道投放测试。他们通过[访问来源]发现其中两个渠道带来的量非常少,而且价格不菲,于是短暂上线就立即撤掉了该投放。同时实时分析还可以用于反作弊,短时间、单一渠道流量暴增很可能就是刷单或者流量作弊的表现。某日上午该网站访问量连续出现两个异常高峰,且该期间绝大部分流量来自一个渠道。运营人员对此非常警觉,经排查是代理商作弊,用机器人刷量;事后该企业果断放弃该代理渠道。上述两个行为为该企业挽回了大量损失。
3.实时监测,让产品运营更加高效
现在互联网产品迭代的速度越来越快,产品运营需要对新上线的产品或者功能进行追踪,评估产品的效果或者市场反馈。
互联网金融领域存在组团诈骗进件(进件,即购买金融产品)的情况。以某互联网金融公司为例,因为风险控制的原因会控制对外宣传的力度,每天的访问用户数基本比较稳定。某日,该互金公司上线了一个新的金融产品,公司的运营人员通过[访问用户实时走势]发现访问用户陡然增加,再通过[活跃网页]发现该产品中的某个页面的访问量特别高,经过排查确定这是该产品的漏洞,会导致公司流失大量资金,他们果断采取修复措施再重新上线。如果还是用传统的流量监测方法,可能等到两三天才能发现这个漏洞,到时候流失资金可能达几百万之巨。
三、数据驱动的精细化运营
一个产品或者运营手段从最初的“idea”到最后成型上线,运营人员需要通过数据来衡量它的表现及市场反馈。同时,从数据中发现问题,提出假设,不断升级迭代;从而形成“idea — product – data”的良性循环,驱动业务和客户的增长。
在运营的过程中,数据反馈越及时,我们迭代的速度就越快,运营的效率就越高。1.01的365次方约等于38;换言之,通过实时分析可以实现不断的、快速的小幅迭代,而这积累起来就是运营、是企业巨大的进步
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16