京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的目的性越强,越有价值!
数据分析从功能角度来讲,无非就是两个。
1、有问题,通过数据分析寻找原因,制定决策。
2、有新项目、产品、方案要上线,或企业制定大决断,需要数据分析结论做辅助参考。
为什么强调数据分析的目的性?
数据分析的目的是整个研究方案的起点,决定着后续研究的内容,数据的来源,使用的方法。
目的不明确会导致方向性的错误,这里举两个歪例子。
场景A:
某电商双十一跟着淘宝做了一个大促活动,事后想了解活动的效果,于是找到了小王。
于是,小王开始收集数据、处理数据、建立模型、制作报表。最终得出结论:活动期间UV上涨了50%,订单增长了40%,销售额提高了45%云云。
场景B:
感觉最近的天猫的销售量有点低,做个分析看看是什么原因,该怎么做?
小王又开始发起洪荒之力,结合平台的流量数据,订单数据、用户数据,采用聚类分析、主成分分析、相关行分析等分析挖掘手段。发现男性群体的销售量明显下滑,需要提高对这类人群的引流。
以上两个场景,场景A虽然各项数据看上去都提高了,但是实际上该电商是做礼品的,他更需要知道双十一与其他各个节日活动效果的对比,只算了产出,未算计投入,结论和目的一样不清晰。场景B用到了很多算法,挖掘到某群体的变化,但实际上该电商在在该月的男装上新量显著减少,销量下降与季节的调整有关。
所以,以上两个案例,一个不细分研究目的,另一个不做目的性的引导,是分析失败的主要问题。业务不了解数据,数据不了解业务,这种衔接矛盾常常存在。
目的的面纱需要层层揭开
数据分析的目的往往不是那么明确,只是有个大致的方向,这个有时候业务员和领导也没有办法。所以做数据分析时要抖点机灵。
比如让你做一个用户行为分析,出一个研究方案。你一定要知道这并不是真正的需求。你需要与领导再沟通,了解他做用户行为到底是要解决什么问题,摆脱什么困境?如果领导是因为觉得客户流失率太高,想留住客户,那分析方案就应该围绕用户满意度去展开,分析的价值在于研究找到用户不满意的点,并针对这些问题提出改进建议。
如何明确分析的目的?
1、沟通、沟通、再沟通!
领导、业务很多都迫切希望知道结果,原因,该怎么做,有多少提升空间。虽然只是一句话,你要做的岂不止这些,所以要多沟通,找出问题的症结。
2、多问一句,少绕弯路
如果缺乏对业务的认识,在分析时不妨多问一句,关心的指标有哪些?比如分析用户转化率的时候,影响的主要因素有哪些?一般正常的指标是在什么水平?有哪些很客观的外在因素可以排除,比如节假日。
没有目的性的数据分析都是“瞎玩”,都是盲目的。但有人会说,我知道该怎么分析,有目的,但是不知道如何表达,用什么工具操作,找信息部要数据麻烦,做报表困难,Excel只会基本,满足不了需求。想要学习更多数据分析方面的知识,可以选择到cda数据分析师协会去学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29