京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想充分利用数据?改变操作方式
如今,数字革命几乎在每个行业发生,其中包括医疗保健,制造,金融,零售行业等等。组织正在采用传感器,数字记录,云计算和自动化(存在众多其他技术之中),以简化和改进操作,报告,以及客户服务。这一切的基础是一个稳定的数据流,这是更精确的大量的数据,因为我们知道有可能促进业务的发展。
人们处在组织运作方式的模式转变的边缘,这是理所当然的。新技术日益发展,并更加有助于大量的信息。为了利用数据价值,企业需要不同的技能和决策结构,以评估业务挑战。
未来保持什么
在未来的5到10年里,人工智能到机器人技术将迅速发展,企业几乎将拥有自动化任务和决策所需要的一切。由于销售和客户服务是自动化的,消费者将对人类交互赋予更高的价值,同时保持对提升服务的期望,换句话说,人们需要在他们的方式获得他们的客户的偏好和经验的信息。
利用分析的力量,组织将能够分类这些大量的数据,并以惊人的速度从中学习。当想到人们与过去的流程相比,制表和分析数据需要多长时间,其进展是惊人的。快速分析将为企业带来生物学的显微镜。通过这样的放大镜,看到以前看不到的问题和机遇。
为什么需要一个新的结构
虽然企业将比以往任何时候拥有更多的数据,他们将需要重新考虑组织结构,并从其带来的竞争优势,以及可能产生的新的业务模式中受益。
考虑这一点:将组织带入未来所需的许多技术已经存在。例如,使用20年前开发的技术,人类就可以到达火星。人们不一定需要开发新技术,而是需要扩展并如何应用它们,这需要一种不同的思维方式。
商业世界需要坦途
随着企业适应技术变革,过渡的速度将推动更扁平的组织模式。除了一旦需要有效操作的刚性层次结构之外,组织必须开始以相反的方式操作。
例如,自助服务分析等创新需要较少的批准步骤才能实现决策。因此,组织不应采用传统的决策层次结构,而应培养分析文化。那么就是什么意思呢?就是授权组织中的每个人做出基于事实的决策。向一线员工(包括销售员和制造工厂的员工)询问他们用来做决定的数据。如果他们不使用数据,请采取措施纠正这一点。他们是否需要访问数据?他们对数据感到满意吗?这并需不要将每个人都变成一个数据分析师,只是让他们提供做出决定所需的信息。
压缩组织结构,以及消除决策障碍,将使企业结构变得更加紧密,因此更具竞争力。听说过Zappos公司的分权模式吗?如果没有,应该了解一下。虽然并不是说所有组织都应该与Zappos一样的模式,但人们需要拆除组织结构中的某些层面。这种转变是组织运作的巨大变化,并支持决策的民主化。
协作是必不可少的
传统的企业层次结构并不是企业必须改变的唯一方面。扁平的组织结构意味着合作层次必须增加,必须促进共享和协作的文化。组织应该选择具有多学科背景的管理者,要求他们吸取相关的企业的经验,并借用想法。这将有助于鼓励合作,吸取新的创新思想。
发展这种文化的挑战是如何平衡个人贡献与团队合作。近期的“哈佛商业评论”研究所证实,如果每个团队成员没有平等地工作,过于密切的合作可能导致个人能力的损害。另外还发现,就个人而言,专业人员需要具有安静的时间来完成工作。
考虑到这些因素,理想的组织模式将能够更快地做出决策,同时减少层级监督,并创造一个合作的工作环境,重视更加重要的个人贡献。
到2035年,期望能够突破新的前沿技术,创造全新的企业和商业模式,如果人们可以改变自己的思维和应用分析的力量的话。组织可能会发现,如果他们把信息正确掌握在手中,有正确的观点,他们有所需要的所有数据,以解决他们最具挑战性的业务问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01